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Abstract

Many modern genomic data analysis problems require implementing regressions where
the number of unknowns (p, e.g., the number of marker effects) vastly exceeds sample size
(n). Implementing these large-p-with-small-n regressions poses several statistical and com-
putational challenges. Some of these challenges can be confronted using Bayesian meth-
ods, and the Bayesian approach allows integrating various parametric and non-parametric
shrinkage and variable selection procedures in a unified and consistent manner. The BGLR
R-package implements a large collection Bayesian regression models, including various
parametric regressions where regression coefficients are allowed to have different types of
prior densities (flat, normal, scaled-t, double-exponential and various finite mixtures of
the spike-slab family) and semi-parametric methods (Bayesian reproducing kernel Hilbert
spaces nregressions, RKHS). The software was originally developed as an extension of
the BLR package and with a focus on genomic applications; however, the methods im-
plemented are useful for many non-genomic applications as well. The response can be
continuous (censored or not) or categorical (either binary, or ordinal). The algorithm is
based on a Gibbs Sampler with scalar updates and the implementation takes advantage
of efficient compiled C and Fortran routines. In this article we describe the methods
implemented in BGLR, present examples of the use of the package and discuss practical
issues emerging in real-data analysis.

Keywords: Bayesian Methods, Regression, Whole Genome Regression, Whole Genome Pre-
diction, Genome Wide Regression, Variable Selection, Shrinkage, semi-parametric regression,
RKHS, R.

1. Introduction

Many modern statistical learning problems involve the analysis of highly dimensional data;
this is particularly common in genetic studies where, for instance, phenotypes are regressed on
large numbers of predictor variables (e.g., SNPs) concurrently. Implementing these large-p-
with-small-n regressions posses several statistical and computational challenges; including how
to confront the so-called ‘curse of dimensionality’ (Bellman 1961) as well as the complexity of
a genetic mechanism that can involve various types of interactions between alleles and with
environmental factors. Recent developments in the areas of shrinkage estimation, both in the
penalized and Bayesian regression frameworks, as well as in computational methods have made
the implementation of these large-p-with-small-n regressions feasible. Consequently, whole-
genome-regression approaches (Meuwissen et al. 2001) are becoming increasingly popular for
the analysis and prediction of complex traits in plants (e.g. Crossa et al. 2010), animals (e.g.
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VanRaden et al. 2009; Hayes et al. 2009) and humans (e.g. Yang et al. 2010; Makowsky et al.
2011; Vazquez et al. 2012; de los Campos et al. 2013b).

In the last decade a large collection of parametric and non-parametric methods have been
proposed and empirical evidence has demonstrated that there is no single approach that
performs best across data sets and traits. Indeed, the choice of the model depends on multiple
factors such as the genetic architecture of the trait, marker density, sample size, the span of
linkage disequilibrium (e.g., de los Campos et al. 2013a). Although various software (BLR,
Pérez et al. 2010; rrBLUP, Endelman 2011; synbreed, Wimmer et al. 2012; GEMMA,
Zhou and Stephens 2012) exists, most statistical packages implement a few types of methods
and there is need of integrating these methods in a unified statistical and computational
framework. Motivated by this need we have developed the R (R Core Team 2012) package
BGLR (de los Campos and Pérez 2013). The package is available at CRAN and at the R-forge
website https://r-forge.r-project.org/projects/bglr/.

Models. BGLR can be used with continuous (censored or not) and categorical traits
(binary and ordinal). The user has control in choosing the prior assigned to effects and
this can be used to control the extent and type of shrinkage of estimates. For parametric
linear regressions on covariates (e.g., genetic markers, non-genetic co-variates) the user
can choose a variety of prior densities, from flat priors (the so-called ‘fized effects’, a method
that does not induce shrinkage of estimates) to priors that induce different types of shrinkage,
including: Gaussian (Bayesian Ridge Regression, BRR), scaled-t (BayesA Meuwissen
et al. 2001), Double-Exponential (Bayesian LASSO, BL Park and Casella 2008), and two
component mixtures with a point of mass at zero and a with a slab that can be either
Gaussian (BayesC, Habier et al. 2011) or scaled-t (BayesB, Habier et al. 2011). The BGLR
package also implements Bayesian Reproducing Kernel Hilbert Spaces Regressions
(RKHS, Wahba 1990) using Gaussian processes with arbitrarily user-defined co-variance
structures. This class of models allows implementing semi-parametric regressions for various
types of problems, including, scatter-plot smoothing (e.g., smoothing splines Wahba 1990),
spatial smoothing (Cressie 1988), Genomic-BLUP (VanRaden 2008), non-parametric
RKHS genomic regressions (Gianola et al. 2006; Gianola and van Kaam 2008; de los Campos
et al. 2010) and pedigree-BLUP (Henderson 1975).

All the above-mentioned prior densities (e.g., Gaussian, Double Exponential, Scaled-t, finite
mixtures) are index by regularization parameters that control the extent of shrinkage of
estimates; rather than fixing them to some user-specified values we treat them as random.
Consequently, in a deeper level of the hierarchal model these regularization parameters are
assigned prior densities.

Algorithms. In BGLR samples from the posterior density are drawn using a Gibbs sampler
(Geman and Geman 1984; Casella and George 1992); with scalar updating. This approach
is very flexible but computationally demanding. To confront the computational challenges
emerging in Markov Chain Monte Carlo (MCMC) implementations we have adopted a strategy
that combines: (a) the use of built-in R functions for operations that can be vectorized with
(b) customized compiled code (C and Fortran) developed to perform operations that cannot
be vectorized. Thus, the kernel of our software is written in R, but the computationally
demanding steps are carried out using customized routines written in C and Fortran code. The
implementation makes use of BLAS routines daxpy and ddot. The computational performance
of the algorithm can be greatly improved if R is linked against a tuned BLAS implementation
with multithread support, for example OpenBLAS, ATLAS, Intel mkl, etc.
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Ancillary functions and data sets. In addition to the main function (BGLR) the package
comes with: (a) functions to read and write from the R-console *.ped and *.bed files (Purcell
et al. 2007), (b) two publicly available data sets (see Section 4 for further details) and (c)
various examples (type demo (package=‘BGLR’) in the R-console).

In what remains of the article we discuss the methods implemented (Section 2), the
user interface (Section 3), and the data sets included (Section 4) in the BGLR package
in detail. Application examples are given in Section 5. A small benchmark is given in
Section 6. Finally, the article is closed in Section 7 with a few concluding remarks.

2. Statistical Models and Algorithms

The BGLR supports models for continuous (censored or not) and categorical (binary or ordinal
multinomial) traits. We begin by considering the case of a continuous response without
censoring; categorical and censored data are considered later on.

2.1. Conditional distribution of the data

For a continuous response (y;; ¢ = 1,....,n) the data equation is represented as y; = 7; + &,
where 7); is a linear predictor (the expected value of y; given predictors) and e; are independent
normal model residuals with mean zero and variance w?o?. Here, the w}s are user-defined
weights (by default BGLR sets w; = 1 for all data-points) and o2 is a residual variance
parameter. In matrix notation we have

y=mn-te,

where y = {y1,...,yn}, n ={m1,....mn} and € = {e1, ..., e }.
The linear predictor represents the conditional expectation function, and it is structured as
follows:

J L
n=1u+ Y X8+ w, (1)
7 l

where 11 is an intercept, X ; are design matrices for predictors, X; = {z;x}, B, are vectors
of effects associated to the columns of X; and w; = {w;,...,u;} are vectors of random
effects. The only element of the linear predictor included by default is the intercept. The
other elements are user-specified. Collecting the above assumptions, we have the following
likelihood:

n J K; L
p(yl0) = [[ NWilp+ DD miwbix + i, 02wy,
=1

J k=1 !

where 0 represents the collection of unknowns, including the intercept, regression coefficients,
random effects and the residual variance.
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2.2. Prior densities

The residual variance is assigned a Scaled-inverse Chi-square density p(c2) = x~2(02|S., df-)
with degree of freedom df. (>0) and scale parameters S. (>0) and the intercept (i) is assigned
a flat prior. In the parameterization used in BGLR, the prior expectation of the Scaled-inverse
Chi-square density x~2(-|S., df.) is given by %

Regression coefficients {f3;;} can be assigned either un-informative (i.e., flat) or informa-
tive priors. Those coefficients assigned flat priors, the so-called ‘fixed’ effects, are estimated
based on information contained in the likelihood solely. For the coefficient assigned infor-
mative priors, the choice of the prior will play an important role in determining the type of
shrinkage of estimates of effects induced. Figure 1 provides a graphical representation of the
prior densities available in BGLR. The Gaussian prior induce shrinkage of estimate similar
to that of Ridge Regression (RR, Hoerl and Kennard 1970) where all effects are shrunk to a
similar extent; we refer to this model as the Bayesian Ridge Regression (BRR). The scaled-t
and double exponential (DE) densities have higher mass at zero and thicker tails than the
normal density, and they induce a type of shrinkage of estimates that is size-of-effect depen-
dent (Gianola 2013). The scaled-t density is the prior used in model BayesA (Meuwissen
et al. 2001), and the DE or Laplace prior is the one used in the BL (Park and Casella 2008).
Finally, BGLR implements two finite mixture priors: a mixture of a point of mass at zero
and a Gaussian slab, a model usually refereed in the literature on GS as to BayesC (Habier
et al. 2011) and a mixture of a point of mass at zero and a scaled-t slab, a model known as
BayesB (Meuwissen et al. 2001). By assigning a non-null prior probability for the marker
effect to be equal to zero, the priors used in BayesB and BayesC have potential for inducing
variable selection.

Hyper-parameters. Each of the prior distributions above-described are indexed by one or
more parameters that control the type and extent of shrinkage induced. We treat these regu-
larization parameters as unknown; consequently a prior is assigned to these unknowns. Table
1 lists, for each of the prior densities implemented the set of hyper-parameters. Further details
about how regularization parameters are inferred from the data are given in the Appendix.

Combining priors. Different priors can be specified for each of the elements of the linear
predictor, { X1, X o, ..., X j,u1, U2, ..., up }, giving the user great flexibility in building models
for data analysis; an example illustrating how to combine different priors in a model is given
in Box 3a of Section 5.

Gaussian Processes. The vectors of random effects u; are assigned multivariate-normal
priors with a mean equal to zero and co-variance matrix Cov(uy, ug) =K lail where K is
an n X n symmetric positive semi-definite matrix and ail is a variance parameter with prior
density UZZ ~ X" 2(dfy,S)). Special classes of models that can be implemented using these
random effects include standard pedigree-regression models (Henderson 1975) in which case
K is a pedigree-derived co-variance matrix, Genomic BLUP (VanRaden 2008), which case K
may be a marker-derived relationship matrix, or models for spatial regressions (Cressie 1988)
in which case K; may be a co-variance matrix derived from spatial information. Illustration
about the inclusion of these Gaussian processes into models for data analysis are given in
examples of Section 5.

2.3. Algorithms
The R-package BGLR draws samples from the posterior density using a Gibbs sampler (Ge-



Paulino Pérez, Gustavo de los Campos

2 -1 — Gaussian
——— Double Exponential
——— Scaled-t (5df)
—— BayesC (1=0.25)
©
©
& v
s o
[aV]
g
o
S
T T T T T T 1
-6 -4 -2 0 2 4 6
Bi

Figure 1: Prior Densities of Regression Coefficients Implemented in BGLR. All the densities
displayed correspond to random variables with null mean and unit variance.

man and Geman 1984; Casella and George 1992) with scalar updating. For computational
convenience the scaled-t and DE densities are represented as infinite mixtures of scaled normal
densities (Andrews and Mallows 1974), and the finite-mixture priors are implemented using
latent random Bernoulli variables linking effects to components of the mixtures.

Categorical traits. The argument response_type is used to indicate BGLR whether the
response should be regarded as ‘continuous’, the default value, or ‘ordinal’. For continuos
traits the response vector shoud be coercible to numeric; for ordinal traits the response can
take onto K possible (ordered) values y; € {1,..., K} (the case where K = 2 corresponds to
the binary outcome), and the response vector should be coercible to a factor. For categorical
traits we use the probit link; here, the probability of each of the categories is linked to the
linear predictor according to the following link function:

P(y; = k) = ®(ni — ) — ®(0i — Y-1)

where ®(-) is the standard normal cumulative distribution function, 7; is the linear predictor,
specified as above-described, and 4 are threshold parameters, with 79 = —o0, Y& > Ye_1,
vk = 00. The probit link is implemented using data augmentation (Tanner and Wong 1987),
this is done by introducing a latent variable (so-called liability) I; = 1;+¢; and a measurement
model y; = k if y,_1 < I; < ;. For identification purpouses, the residual variance is set equal
to one. At each iteration of the Gibbs sampler the un-observed liability scores are sampled
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Table 1: Prior densities available for regression coefficients in the BGLR package.

Model Hyper-parameters Treatmend in BGLR!
(prior density)
Flat Mean (p3) pug =0
(FIXED) Variance (o3) o =1x1"
Gaussian Mean (p3) pug =0
(BRR) Variance (0/23) ag, ~x 2
Scaled-t Degrees of freedom (dfg) User-specified (default value, 5)
(BayesA) Scale (S3) Sg ~ Gamma
Double-Exponential A Fixed, user specified, or
(BL) A2 A2 ~ Gamma, or
ﬁ ~ Beta?®
Gaussian Mixture 7 (prop. of non-null effects) 7 ~ Beta
(BayesB) dfs User-specified (default value, 5)
S Sg ~ Gamma
Scaled-t Mixture 7 (prop. of non-null effects) 7 ~ Beta
(BayesC) dfs User-specified (default value, 5)
S Sg ~ Gamma

1: Further details are given in the Appendix. 2: This approach is further discussed in de los
Campos et al. (2009b).

from truncate normal densities; once the un-observed liability has been sampled the Gibbs
sampler proceed as if I; were observed (see Albert and Chib 1993, for further details).

Missing data. The response vector can contain missing values. Internally, at each iteration
of the Gibbs sampler missing values are sampled from the corresponding fully-conditional
density. Missing values in predictors are not allowed.

Censored data. Censored data in BGLR is described a triplet {a;,y;, b;}; the elements of
this triplet must satisfy: a; < y; < b;. Here, y; is the observed response (e.g., a time-to event
variable, observable only in un-censored data points, otherwise missing, NA) and a; and b;
define lower and upper-bounds for the response, respectively. Table 2 gives the configuration
of the triplet for the different types of data-points. The triplets are provided to BGLR in the
form of three vectors (y,a,b). The vectors a and b have NULL as default value; therefore, if
only y is provided this is interpreted as a continuous trait without censoring. If @ and b are
provided together with y data is treated as censored. We treat censoring as a missing data
problem; the missing values of y; present due to censoring are sampled from truncated normal
densities that satisfy a; < y; < b;. Further details about models for censored data are given
in examples of section 5.

3. Software interface

The R-package BGLR (de los Campos and Pérez 2013) inherits part of its user interface
from BLR (de los Campos and Pérez 2010). A detailed description of this package can be
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Table 2: Configuration of the triplet used to described censored data-points in BGLR.

Type of point a; Yi b;
Un-censored NULL y; NULL
Right censored a; NA  Inf
Left censored -Inf NA b;

Interval censored a; NA b;

found in (Pérez et al. 2010); however we have modified key elements of the user-interface, and
the internal implementation, to provide the user more flexibility in building models for data
analysis. All the arguments of the BGLR function have default values, except the vector of
phenotypes. Therefore, the simplest call to the BGLR program is as follows:

Box la: Fitting an intercept model

library (BGLR)
y<-50+rnorm(100)
£m<-BGLR (y=y)

When the call £m<-BGLR(y=y) is made, BGLR fits an intercept model, a total of 1500 cycles
of a Gibbs sampler are run, and the 1st 500 samples are discarded. As the Gibbs sampler
collects samples some are saved to the hard drive (only the most recent samples are retained
in memory) in files with extension *.dat and the running means required for computing
estimates of the posterior means and of the posterior standard deviations are updated; by
default a thinning of 5 is used but this can be modified by the user using the thin argument
of BGLR. Once the iteration process finishes BGLR returns a list with estimated posterior
means and several arguments used in the call.

Inputs

Box 1b displays a list of the main arguments of the BGLR function, a short description
follows:

e y,a,b (y, coercible to either numeric or factor, a and b of type numeric) and re-
sponse_type (character) are used to define the response.

e ETA (of type list) is used to specify the linear predictor. By default is set to NULL, in
which case only the intercept is included. Further details about the specification of this
argument are given below.

e nIter, burnIn and thin (all of type integer) control the number of iterations of the
sampler, the number of samples discarded and the thinning used to compute posterior
means.

e saveAt (character) can be used to indicate BGLR where to store the samples, and to
provide a pre-fix to be appended to the names of the file where samples are stored. By
defaults samples are saved in the current working directory and no pre-fix is added to
the file names.
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e S0, df0, R2 (numeric) define the prior assigned to the residual variance, df0 defines the
degree of freedom and SO the scale. If the scale is NULL, its value is chosen so that the
prior mode of the residual variance matches the variance of phenotypes times 1-R2 (see
the Appendix for further details).

( 0

Box 1b: Partial list of arguments of the BGLR function

BGLR( y, a = NULL, b = NULL, response_type = "gaussian",

ETA = NULL,
nlter = 1500, burnIn = 500, thin = 5,
saveAt = "",
SO = NULL, df0 = 5, R2 = 0.5,...
)
= J

Return

The function BGLR returns a list with estimated posterior means and estimated posterior
standard deviations. The parameters used to fit the model are also returned within the list.
Box 1c shows the structure of the object returned after fitting the intercept model of Box 1a.
The first element of the list (y) is the response vector used in the call to BGLR, $whichNa gives
the index of the entries in y that were missing, these two elements are then followed by several
entries describing the call (omitted in Box 1c), this is followed by estimated posterior means
and estimated posterior standard deviations of the linear predictor ($yHat and $SD.yHat),
the intercept ($mu and $SD.mu) and the residual variance ($varE and $SD.varE). Finally $fit
gives a list with DIC and DIC-related statistics (Spiegelhalter et al. 2002).

e N
Box 1lc: Structure of the object returned by BGLR (after running the code in Box
la)

str (fm)
List of 20

$y : num [1:100] 50.4 48.2 48.5 50.5 50.2 ...
$ whichNa : int (0)

$ yHat : num [1:100] 49.7 49.7 49.7 49.7 49.7 ...
$ SD.yHat : num [1:100] 0.112 0.112 0.112 0.112 0.112 ...
$ mu : num 49.7

$ SD.mu : num 0.112

$ varE : num 1.11

$ SD.varE : num 0.152

$ fit :List of 4

..$ logLikAtPostMean: num -147
..$ postMeanLogLik : num -148
..$ pD : num 2.02
..$ DIC : num 298

-attr(*x, "class")= chr "BGLR"
. )
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Output files

Box 1d shows an example of the files generated after executing the commands given in Box
la. In this case samples of the intercept (mu.dat) and of the residual variance (varE.dat)
were stored. These samples can be used to assess convergence and to estimate Monte Carlo
error. The R-package coda (Plummer et al. 2006) provide several useful functions for the
analysis of samples used in Monte Carlo algorithms.

Box 1d: Files generated by BGLR (after running the code in Box 1a)

list.files()
[1] "mu.dat" "varE.dat"
plot(scan("varE.dat,type='0'"))

4. Datasets

The BGLR package comes with two genomic datasets involving phenotypes, markers, pedigree
and other covariates.

Mice data set. This data set is from the Wellcome Trust (http://gscan.well.ox.ac.uk)
and has been used for detection of Quantitative Trait Loci (QTL) by Valdar et al. (2006a,b)
and for whole-genome regression by Legarra et al. (2008), de los Campos et al. (2009b) and
Okut et al. (2011). The data set consists of genotypes and phenotypes of 1,814 mice. Several
phenotypes are available in the data frame mice.phenos. Each mouse was genotyped at
10,346 SNPs. We removed SNPs with minor allele frequency (MAF) smaller than 0.05, and
missing marker genotypes imputed with the corresponding average genotype calculated with
estimates of allele frequencies derived from the same data. In addition to this, an additive
relationship matrix (mice.A) is provided; this was computed using the R-package pedigreemm
(Bates and Vazquez 2009; Vazquez et al. 2010).

Wheat data set. This data set is from CIMMYT global Wheat breeding program and
comprises phenotypic, genotypic and pedigree information of 599 wheat lines. The data
set was made publicly available by Crossa et al. (2010). Lines were evaluated for grain yield
(average of two replicates) at four different environments; phenotypes (wheat.Y) were centered
and standardized to a unit variance within environment. Each of the lines were genotyped for
1,279 Diversity Array Technology (DArT) markers. At each marker two possibly homocygous
were possible and these were coded as 0/1. Marker genotypes are given in the object wheat .X.
Finally a matrix wheat.A provides the pedigree-relationships between lines computed from
the pedigree (see Crossa et al. 2010 for further details). Box 2 illustrates how to load the
wheat and mice data sets.

( )

Box 2: Loading the mice data set included in BGLR

library (BGLR)
data(mice)
data(wheat)
1sO)
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5. Application Examples

In this section we illustrate the use of BGLR with examples.
Fitting Models for Fixed and Random Effects for a Continuous Response

We illustrate how to fit models with various sets of predictors using the mice data set. Valdar
et al. (2006b) pointed out that the cage where mice were housed had an important effect
in the physiological covariates and Legarra et al. (2008) and de los Campos et al. (2009b)
used models that accounted for sex, litter size, cage, familial relationships and markers. One
possible linear model that we can fit to some of the continuous traits available in the mice
data set is as follows:

y=1p+ X168, + X208, + X303 + ¢,

where p is an intercept, X is a design matrix for the effects of sex and litter size, and 3, is
the corresponding vector of effects, which will be treated as ‘fixed’; X o is the design matrix
for the effects of cage and (3, is the vector of cage effects which will treat as random (in the
example fo Box 3a we assign a Gaussian prior to these effects); X3 is the matrix with marker
genotypes and B35 the corresponding vector of marker effects to which, in the example below,
we assign IID double-exponential priors.

Fitting the model. The code provided in Box 3a illustrates how to fit the model above-
described using BGLR. The first block of code, #1#, loads the data. In the second block of
code we set the linear predictor. This is specified using a two-level list. Each of the elements
of the inner list is used to specify the element of the linear predictor. We can specify the
predictors to be included in each of the inner lists either by providing the design matrix or by
using a formula. When the formula is used, the design matrix is created internally using the
model .matrix () function of R. Finally in the 3rd block of code we fit the model by calling
the BGLR() function.

e 1
Box 3a: Fitting a model to markers and non-genetic effects in BGLR

#1# Loading and preparing the input data
library(BGLR); data(mice);
Y<-mice.pheno; X<-mice.X; A=mice.A;
y<-Y$0Obesity.BMI; y<-(y-mean(y))/sd(y)

#2# Setting the linear predictor
ETA<-1list( 1list(~factor (GENDER)+factor(Litter),
data=Y,model="'FIXED'),
list("factor(cage) ,data=Y, model='BRR'),
list (X=X, model='BL')
)

#3# Fitting the model
fm<-BGLR(y=y,ETA=ETA, nIter=12000, burnIn=2000)
save(fm,file="'fm.rda')

When BGLR begins to run, a message warns the user that hyper-parameters were not provided
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and that consequently they were set using built-in rules; further details about these rules are
given in the Appendix.

Extracting results. Once the model was fitted one can extract from the list returned by
BGLR the estimated posterior means and the estimated posterior standard deviations as well
as measures of model goodness of fit and of model complexity. Also, as BGLR run, it saves
samples of some of the parameters; these samples can be brought into the R-environment for
posterior analysis. Box 3b illustrates how to extract from the returned object estimates of
the posterior means and of the posterior deviations and how to create trace and density plots.

The first block of code (#1#) in Box 3b shows how to extract estimated posterior means and
posterior standard deviations of effects. In this case we extract those corresponding to the
third element of the linear predictor (fm$ETA[[3]1]) which correspond to the markers, but the
same could be done for any of the elements of the linear predictors. For models involving linear
regressions $b and $SD.b give the estimated posterior means and posterior standard deviations
of effects. The second block (#2#) of code of Box 3b shows how to extract the estimated
posterior mean of the linear predictor, and also how to compute the estimated posterior mean
of particular elements of the linear predictor, in this case we illustrate with genomic values
(gHat). The third block of code (#3#) illustrates how to extract DIC (Spiegelhalter et al.
2002) and related statistics; finally, the fourth block of code (#4#) shows how to retrieve
samples from the posterior distribution and produce trace plots. The plots produced by the
code in Box 3b are given in Figure 2.

11
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Box 3b: Extracting results from a model fitted using BGLR (continues from Box 3a)

#1# Estimated Marker Effects & posterior SDs
bHat<- fm$ETA[[3]]1$b
SD.bHat<- fm$ETA[[3]]1$SD.b
plot(bHat"2, ylab='Estimated Squared-Marker Effect',
type='o',cex=.5,col=4,main="'Marker Effects')

#2# Predictions
# Total prediction
yHat<-fm$yHat
tmp<-range (c(y,yHat))
plot(yHat™y,xlab='0bserved',ylab='Predicted',col=2,
xlim=tmp,ylim=tmp); abline(a=0,b=1,col=4,1lwd=2)

# Just the genomic part
gHat<-X%*%fm$ETA[[3]]$b
plot(gHat™y,xlab='Phenotype',
ylab='Predicted Genomic Value',col=2,
xlim=tmp,ylim=tmp); abline(a=0,b=1,col=4,1lwd=2)

#3# Godness of fit and related statistics
fm$fit
fm$varE # compare to var(y)

#4# Trace plots
list.files()

# Residual variance

varE<-scan('varE.dat')
plot(varE,type='o',col=2,cex=.5,ylab=expression(var[e]));
abline (h=fm$varE,col=4,1wd=2) ;

abline (v=fm$burnIn/fm$thin,col=4)

# lambda (regularization parameter of the Bayesian Lasso)
lambda<-scan('ETA_3_lambda.dat')
plot(lambda,type='o"',col=2,cex=.5,ylab=expression(lambda)) ;
abline (h=fm$ETA[[3]]$lambda, col=4,1wd=2) ;
abline (v=fm$burnIn/fm$thin, col=4)
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Figure 2: Squared-Estimated Marker Effects (top-left), phenotype versus predicted genomic
values (top-right), trace plot of residual variance (lower-left) and trace plot of regularization
parameter of the Bayesian Lasso (lower-right).

Fitting a Pedigree+Markers ‘BLUP’ model using BGLR

In the following example we illustrate how to incorporate in the model Gaussian random
effects with user-defined covariance structures. These types of random effects appear both in
pedigree and genomic models. The example presented here uses the wheat data set included
with the package. In the example of Box 4a we include two random effects, one representing a
regression on pedigree, a ~ N (0, Ac?), where A is a pedigree-derived numerator relationship
matrix, and one representing a linear regression on markers, g ~ N(O, Gagu) where, G is a
marker-derived genomic relationship matrix. The implementation of Gaussian processes in
BGLR exploits the equivalence between these processes and random regressions on principal
components (de los Campos et al. 2010; Janss et al. 2012). Te user can implement a RKHS
regression either by providing co-variance matrix (K) or its eigen-value decomposition (see the
example in Box 4a). When the co-variance matrix is provided, the eigen-value decomposition
is computed internally.

Box 4a: Fitting a Pedigree 4+ Markers regression using Gaussian Processes

#1# Loading and preparing the input data
library(BGLR) ; data(wheat);
Y<-wheat.Y; X<-wheat.X; A<-wheat.A;
y<—Y[,1]

13
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#2# Computing the genomic relationship matrix
X<-scale(X,center=TRUE, scale=TRUE)
G<-tcrossprod(X) /ncol (X)

#3# Computing the eigen-value decomposition of G
EVD <-eigen(G)

#3# Setting the linear predictor
ETA<-1list(1list(K=A, model='RKHS'),
list (V=EVD$vectors,d=EVD$values, model='RKHS')
)

#4# Fitting the model
fm<-BGLR (y=y,ETA=ETA, nIter=12000, burnIn=2000,saveAt='PGBLUP_')
save(fm,file="'fmPG_BLUP.rda')

Box 4b shows how to extract estimates, predictions, and samples from the fitted model. The
first block of code (#1) shows how to obtain the predictions. The second block of code shows
how to extract some goodness of fit related statistics. The third block of code shows how
to extract the posterior mean of the variances components o2 and agu. Note that in order
to obtain the estimate it is necessary to specify the component number (1 or 2), this can be
done by writing fm$ETA[[1]]1$varU and fm$ETA[[2]]$varU respectively. Finally, the fourth
block of code shows how to produce the trace plots for o2, ag and o2 (graphs not shown).

Box 4b: Extracting estimates, predictions, and samples from Reproducing Kernel
Hilbert Spaces Regressions (continues from Box 4a first)

#1# Predictions
# Total prediction
yHat<-fm$yHat
tmp<-range (c(y,yHat))
plot(yHat~y,xlab='0bserved',ylab='Predicted',col=2,
xlim=tmp,ylim=tmp); abline(a=0,b=1,col=4,1lwd=2)

#2# Godness of fit and related statistics
fm$fit
fm$varE # compare to var(y)

#3# Variance components associated with the genomic and pedigree
# matrices
fm$ETA[[1]]$varl
fm$ETA[[2]] $varU

#4# Trace plots
list.files()
# Residual variance
varE<-scan('PGBLUP_varE.dat')
plot(varE,type=‘o',col=2,cex=.5);
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#varA and varU
varA<-scan('PGBLUP_ETA_1_varU.dat"')
plot(varA,type='o',col=2,cex=.5);
varU<-scan('PGBLUP_ETA_2_varU.dat"')
plot(varU,type='o',col=2,cex=.5)
. /

Reproducing Kernel Hilbert Spaces Regressions

Reproducing Kernel Hilbert Spaces Regressions (RKHS) have been used for regression (e.g.,
Smoothing Spline Wahba 1990), spatial smoothing (e.g., Kriging Cressie 1988) and classifica-
tion problems (e.g., Support Vector Machine, Vapnik 1998). Gianola et al. (2006), proposed
to use this approach for genomic prediction and since then several methodological and applied
articles have been published (Gonzélez-Recio et al. 2008; Gianola and de los Campos 2008;
de los Campos et al. 2009a, 2010).

Single-Kernel Models. In RKHS the regression function is a linear combination of the basis
function provided by the reproducing kernel (RK); therefore, the choice of the RK constitutes
one of the central elements of model specification. The RK is a function that maps from pairs
of points in input space into the real line and must be positive semi-definite. For instance, if the
information set is given by vectors of marker genotypes the RK, K (x;, x;/) maps from pairs of
vectors of genotypes, {x;, x; }, onto the real line and must satisfy, >, > ., cio K (x5, 24) > 0,
for any non-null sequence of coefficients «;. Following de los Campos et al. (2009a) the
Bayesian RKHS regression can be represented as follows:

y=1u+u+e with 2)
p(p, u,€) o< N(u|0, Ko2)N(g|0, Io2)

where K = {K(x;,x;)} is an (n X n) matrix whose entries are the evaluations of the RK
at pairs of points in input space. The structure of the model described by (2) is that of
the standard Animal Model (Quaas and Pollak 1980) with the pedigree-derived numerator
relationship matrix (A) replaced by the kernel matrix (K). Box 5 features an example using
a Gaussian Kernel evaluated in the (average) squared-Euclidean distance between genotypes,

P )2
—h x mka”“) } In the example genotypes were centered and

that is: K(x;, xy) = exp{
standardized, but this is not strictly needed. The bandwidth parameter controls how fast the
co-variance function drops as the distance between pairs of vector genotypes increases. This
parameter plays an important role. In this example we have chosen the bandwidth parameter

to be equal to 0.5, further discussion about this parameter is given in next example.

( 0

Box 5: Fitting a Single Kernel Model in BGLR

#1# Loading and preparing the input data
library(BGLR); data(wheat);

Y<-wheat.Y; X<-wheat.X; n<-nrow(X); p<-ncol(X)
y<—Y[,1]

15
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s 0
#2# Computing the distance matrix and then the krenel.
X<-scale(X,center=TRUE, scale=TRUE)
D<-(as.matrix(dist (X,method='euclidean'))"2)/p
h<-0.5
K<-exp(-h*D)

#3# Single Kernel Regression using BGLR

ETA<-1list(list(K=K,model="'RKHS'))
fm<-BGLR (y=y,ETA=ETA,nIter=12000, burnIn=2000,saveAt='RKHS_h=0.5_")

Multi-Kernel Models. The bandwidth parameter of the Gaussian kernel can be chosen
either using cross-validation (CV) or with Bayesian methods. The CV approach requires
fitting models over a grid of values of h. The Bayesian approach estimates h, and all the
model uknowns, form the data concurrently. The fully Bayesian treatment, which consist of
treating h as unknown, is computationally demanding because, any time h is updated, the
RK needs to be re-computed. To overcome this problem de los Campos et al. (2010) proposed
to use a multi-kernel approach (named Kernel Averaging, KA) consisting on: (a) defining a
sequence of kernels based on a set of reasonable values of h, and (b) fitting a multi-kernel
model with as many random effects as kernels in the sequence. The model has the following
form:

y=1u+r u +e with 3)
p(Mvul, - UL, E) X Hlel N(u|07 KZO-ZZ)N(€|O? IO'?)

where K is the RK evaluated at the lth value of the bandwidth parameter in the sequence
{h1,...,hr}. It can be shown (e.g., de los Campos et al. 2010) that if variance components
are known, the model of expression (3) is equivalent to a model with a single random effect
whose distribution is N (u|0, Ko2) where K is a weighted average of all the RK used in (3)
with weights proportional to the corresponding variance components (hence the name, Kernel
Averaging).

Performing a grid search or implementing a multi-kernel model requires defining a reasonable
range for h. One possibility is to choose as a focal point for that range a value of h that gives
a RK similar to the one given by the G-matrix (this one represents the kernel for an additive

P )2
model). The entries of the distance matrix D = {DW = W} can be calculated
from the entries of the G-matrix G = {Gii/ = M}; indeed, D;; = Gy + Gy — 2G 0.

What value of h makes exp{—h x D;;} ~ G;#? Consider for instance a pair of full sibs in an
outbreed population, in this case E[G;;] = E[Gyy] =1 and E[G,y] = 0.5 therefore, E[D;y] =
1, and using h = 0.8 we get K (x;, ;) = exp{—0.8} ~ 0.4. Similarly, for a pair of half-sibs se
have: E[G;»] = 0.5, therefore, E[D;y] = 1.5 and K (x;,x;) = exp{—0.8 x 1.5} ~ 0.3, which
gives values for the RK for that type of relatives close to the ones given by the G-matrix. In
inbreed populations smaller values of h will be needed because E[G;] > 1. Box 6 illustrates
how to fit a multi-kernel model using h = 0.5 x {1/5,1,5}. With this choice of values for the
bandwidth parameter the model includes kernels that give correlations much smaller (h = 2.5)
similar (h = 0.5), and much higher (h = 0.1) than the ones given by the G matrix. This is
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illustrated in Figure 3 that displays the entries of the 1st row of the kernel matrix evaluated
at each of the values of the bandwidth parameter in the grid.

Box 6: Fitting a RKHS Using a Multi-Kernel Methods (Kernel Averaging)

#1# Loading and preparing the input data
library(BGLR); data(wheat) ;

Y<-wheat.Y; X<-wheat.X; n<-nrow(X); p<-ncol(X)
y<-Y[,1]

#2# Computing D and then K

X<-scale (X, center=TRUE, scale=TRUE)
D<-(as.matrix(dist (X,method='euclidean'))"2)/p
h<-0.5%c(1/5,1,5)

#3# Kernel Averaging using BGLR
ETA<-1list(list (K=exp(-h[1]#*D) ,model='RKHS'),
list (K=exp(-h[2]*D) ,model='RKHS'),
list (K=exp(-h[3]#*D) ,model='RKHS'))
fm<-BGLR (y=y,ETA=ETA,nIter=5000, burnIn=1000,saveAt='RKHS_KA_')

#1# Variance Components
fm$ETA[[1]1]1$varU ; fm$ETA[[2]]1$varU; fm$ETA[[3]]$varU

1.0

K(1,i)

0.4

individual

Figure 3: Entries of the 1st row of the (Gaussian) kernel matrix evaluated at three different
values of the bandwidth parameter, h = 0.5 x {1/5,1,5}.

Assessment of Prediction Accuracy
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The simple way of assessing prediction accuracy consists of partitioning the data set into two
disjoint sets: one used for model training (TRN) and one used for testing (T'ST). Box 7 shows
code that fits a G-BLUP model in a TRN-TST setting using the wheat data set. The code
randomly assigns 100 individuals to the TST set. The variable tst is a vector that indicates
which data-points belong to the T'ST data set; for these entries we put missing values in the
phenotypic vector (see Box 7). Once the model is fitted predictions for individuals in TST
set can be obtained typing fit$yHat [tst] in the R command line. Figure 4 plots observed
vs predicted phenotypes for individuals in training and TST sets.

( )

Box 7: Assessment of Prediction Accuracy: Continuous Response

#1# Loading and preparing the input data
library(BGLR) ; data(wheat) ;
Y<-wheat.Y; X<-wheat.X; n<-nrow(X); p<-ncol(X)
y<—Y[,1]

#2# Creating a Testing set
yNAL-y
set.seed(123)
tst<-sample(l:n,size=100,replace=FALSE)
yNA[tst]<-NA

#3# Computing G
X<-scale(X,center=TRUE, scale=TRUE)
G<-tcrossprod(X)/p

#4# Fits the G-BLUP model
ETA<-1list(1list (K=G,model='RKHS'))
fm<-BGLR (y=yNA,ETA=ETA,nIter=5000, burnIn=1000,saveAt='RKHS_')

plot (fm$yHat,y,xlab="Phenotype",
ylab="Pred. Gen. Value" ,cex=.8,bty="L")
points(x=y[tst],y=fm$yHat [tst],col=2,cex=.8,pch=19)
legend ("topleft", legend=c("training","testing"),bty="n",
pch=c(1,19), col=c("black","red"))

#5# Assesment of correlation in TRN and TST data sets
cor (fm$yHat [tst] ,y [tst]) #TST
cor (fm$yHat [-tst] ,y[-tst]) #TRN

A cross-validation is simply a generalization of the TRN-TST evaluation presented in Box 7.
For a K-fold cross-validation there are K TRN-TST partitions; in each fold, the individuals
assigned to that particular fold are used for TST and the remaining individuals are used for
TRN.

5.1. Regression with Ordinal and Binary Traits

For categorical traits BGLR. uses the probit link and the phenotype vector should be coercible
to a factor. The type of response is defined by setting the argument ‘response_type’.
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Figure 4: Estimated genetic values for training and testing sets. Predictions were derived
using G-BLUP model (see BoxT7).

By default this argument is set equal to ‘Gaussian’. For binary and ordinal outcomes
we should set response_type=‘ordinal’. Box 8 provides a simple example that uses the
wheat data set with a discretized phenotype. The second block of code, #2#, presents the
analysis of a binary outcome, and the third one, #3#, that of an ordinal trait. Figure 5
shows, for the binary outcome, a plot of predicted probability versus realized value in the
TRN and TST datasets. The estimated posterior means and posterior standard deviations
of marker effects and posterior means of the linear predictor are retrieved as described before
(e.g., Tm$ETA[[1]1]1$b, fm$yHat). For continuous outcomes the posterior mean of the linear
predictor is also the conditional expectation function. For binary outcomes, the conditional
expectation is simply the success probability; therefore, in this case BGLR also returns the
estimated probabilities of each of the categories fm$probs).

Box 8: Fitting models with binary and ordinal responses

#1# Loading and preparing the input data
library(BGLR); data(wheat);

Y<-wheat.Y; X<-wheat.X; A<-wheat.A;
y<—Y[,1]
tst<-sample(1:nrow(X),size=150)
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#2# Binary outcome
yBin<-ifelse(y>0,1,0)
yBinNA<-yBin ; yBinNA[tst]<-NA
ETA<-1list(list(X=X,model='BL'))

fmBin<-BGLR (y=yBinNA,response_type='ordinal', ETA=ETA,
nIter=1200,burnIn=200)

head (fmBin$probs)

par (mfrow=c(1,2))

boxplot (fmBin$probs [-tst,2] “yBin[-tst] ,main='Training',ylab='Estimated prob.')
boxplot (fmBin$probs [tst,2] “yBin[tst] ,main='Testing', ylab='Estimated prob.')

#2# Ordinal outcome
yOrd<-ifelse(y<quantile(y,1/4),1,ifelse(y<quantile(y,3/4),2,3))
yO0rdNA<-yOrd ; yOrdNA[tst]<-NA
ETA<-1list(list (X=X,model='BL'))

fm0rd<-BGLR (y=yOrdNA,response_type='ordinal', ETA=ETA,
nIter=1200,burnIn=200)

head (fmOrd$probs)
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Figure 5: Estimated probability by category, versus observed category (binary response).

5.2. Regression with Censored Outcomes

Box 9 illustrates how to fit a model to a censored trait. Note that in the case of censored

trait the response is specified using a triplet (a;,v;, b;) (see Table 2 for further details). For
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assessment of prediction accuracy (not done in Box 9), one can set a; = —o0, y; = NA,
b; = oo for individuals in testing data sets, this way there is no information about the ith
phenotype available for the model fit.

( N
Box 9: Fitting censored traits

#1# Loading and preparing the input data
library(BGLR); data(wheat);

Y<-wheat.Y; X<-wheat.X; A<-wheat.A;
y<-Y[,1]

#censored

n<-length(y)
cen<-sample(1l:n,size=200)
yCen<-y

yCen [cen] <-NA
a<-rep(NA,n)
b<-rep(NA,n)
alcen]<-y[cen] -runif (min=0,max=1,n=200)
blcen]<-Inf

#models
ETA<-1list (list(X=X,model='BL'))

fm<-BGLR (y=yCen,a=a,b=b,ETA=ETA,nIter=12000, burnIn=2000)

cor(y[cen] ,fm$yHat [cen])

6. Benchmark of parametric models

We carried out a benchmark evaluation by fitting a BRR to data sets involving three different
sample size (n=1K, 2K and 5K, K=1,000) and four different marker densities (p=5K, 10K,
50K and 100K). The evaluation was carried out in an Intel(R) Xeon(R) processor @ 2 GHz.
Computing time, expressed in seconds per thousand iterations of the Gibbs sampler are given
in Figure 6. R was executed in a single thread and was linked against OpenBLAS. Computing
scales approximately proportional to the product of the number of records and the number
of effects. For the most demanding scenario (n=5K, p=100K) it took approximately 11 min
to complete 1,000 iterations of the Gibbs sampler.

In general, the computational time of models BayesA and BL are slightly longer than that
of BRR (~ 10% longer). The computational time of models using finite-mixture priors (e.g.,
models BayesB or BayesC) tend to be higher than those of BayesA, BL and BRR, unless the
proportion of markers entering in the model is low.

21
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Figure 6: Seconds per 1000 iterations of the Gibbs sampler by number of markers and sample
size. The Benchmark was carried out by fitting a Gaussian regression (BRR) using an Intel(R)
Xeon(R) processor @ 2 GHz. Computations were carried out using a single thread.

7. Concluding Remarks

In BGLR we implemented, in a unified Bayesian framework, several methods commonly
used in genome-enabled prediction, including various parametric models as well as Gaussian
processes that can be used for parametric or semi-parametric regression/prediction. The
package supports continuous (censored or not) as well as binary and ordinal traits. The
user interface gives the user great latitude in combining different modeling approaches for
data analysis. Operations that can be vectorized are performed using built-in R-functions,
but most of the computing intensive tasks are performed using compiled routines written
in C and Fortran languages. The package is also able to take advantage of multi-thread
BLAS implementations in both Windows and UNIX-like systems. Finally, together with the
package we have included two data sets and ancillary functions that can be used to read into
the R-environment genotype files written in ped and bed formats.

The Gibbs sampler implemented is computationally very intensive and our current implemen-
tation stores genotypes in memory; therefore, despite of the effort made in in the development
of BGLR to make the algorithm computationally efficient, performing regressions with hun-
dreds of thousands of markers requires access to large amounts of RAM and the computational
time can be considerable. Certainly, faster algorithms could be conceived, but these are in
general not as flexible, in terms of the class of models that can be implemented, as the ones
implemented in BGLR.

Future developments. Although some of the computationally intensive algorithms imple-
mented in BGLR can benefit from multi-thread computing; there is large room to further
improve the computational performance of the software by making more intensive use of par-
allel computing. In future releases we plan to exploit parallel computing to a much greater
extent. Also, we are currently working on modifying the software so that genotypes do not
need to be stored in memory. Future releases including these and other features will be
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made at the R-Forge website (https://r-forge.r-project.org/R/?group_id=1525) first
and after considerable testing at CRAN.
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In this appendix we describe the prior distributions assigned to the location parameters,
(B, ), entering in the linear predictor of eq. (1). For each of the unknown effects included
in the linear predictor, {3, .., 3, u1,...,ur}, the prior density assigned is specified via the
argument model in the corresponding entry of the list (see Box 3a for an example). Table A1l
describes, for each of the options implemented, the prior density used. A brief description is
given below.

FIXED. In this case regression coefficients are assigned flat priors, specifically we use a
Gaussian prior with mean zero and variance equal to 1 x 1019,

BRR. When this option is used regression coefficients are assigned normal IID normal dis-
2. In a 2nd level of the hierarchy, the variance
parameter is assigned a scaled-inverse Chi-squared density, with parameters dfs and Sg. This

density is parameterized in a way that the prior expected value and mode are E(aé) = %

tributions, with mean zero and variance o

and M ode(a%) = %, respectively. By default, if dfg and Sg are not provided, BGLR sets
dfs = 5 and solves for the scale parameter to match the R-squared of the model (see default
rules to set hyper-parameters below). An analysis with fixed variance parameter can be ob-
tained by choosing the degree of freedom parameter to a very large value (e.g., 1 x 10'°) and
solving for the scale using Sz = J% X (dfg + 2); this gives a prior that collapses to a point of
mass at ag.

BayesA. In this model the marginal distribution of marker effects is a scaled-t density, with
parameters dfg and Sg. For computational convenience this density is implemented as an
infinite mixture of scaled-normal densities. In a first level of the hierarchy marker effects are
assigned normal densities with zero mean and marker-specific variance parameters, U,%j . In
a 2nd level of the hierarchy these variance parameters are assigned IID scaled-inverse Chi-
squared densities with degree of freedom and scale parameters dfg and Sg, respectively. The
degree of freedom parameter is regarded as known; if the user does not provide a value for this
parameter BGLR sets dfg = 5. The scale parameter is treated as unknown, and BGLR assigns
to this parameter a gamma density with rate and shape parameters r and s, respectively. The
mode and coefficient of variation (CV) of the gamma density are Mode(Sg) = (s — 1)/r (for
s > 1) and CV(Sy) = 1/4/s. If the user does not provide shape and rate parameters BGLR
sets s = 1.1, this gives a relatively un-informative prior with a CV of approximately 95%,
and then solves for the rate so that the total contribution of the linear predictor matches the
R-squared of the model (see default rules to set hyper-parameters, below). If one wants to
run the analysis with fixed scale one can choose a very large value for the shape parameter
(e.g., 1 x 10'%) and then solve for the rate so that the prior mode matches the desired value
of the scale parameter using r = (s — 1)/53.

Bayesian LASSO (BL). In this model the marginal distribution of marker effects is double-
exponential. Following Park and Casella (2008) we implement the double-exponential density
as a mixture of scaled normal densities. In the first level of the hierarchy, marker effects are
assigned independent normal densities with null mean and maker-specific variance parameter
T].Qk x 02. The residual variance is assigned a scaled-inverse Chi-square density, and the marker-
specific scale parameters, szk, are assigned IID exponential densities with rate parameter
A2 /2. Finally, in the last level of the hierarchy A2 is either regarded as fixed (this is obtained
by setting in the linear predictor the option type=‘FIXED’), or assigned either a Gamma
(A2 ~ Gamma(r, s) if type=‘gamma’) or a A/ max is assigned a Beta prior, if type=‘beta’,
here max is a user-defined parameter representing the maximum value that A\ can take). If
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nothing is specified, BGLR sets type=‘gamma’ and s = 1.1, and solves for the scale parameter
to match the expected R-squared of the model (see section 2 of this appendix).

BayesB-C. In these models marker effects are assigned IID priors that are mixtures of a point
of mass at zero and a slab that is either normal (BayesC) or a scaled-t density (BayesB). The
slab is structured as either in the BRR (this is the case of BayesC) or as in BayesA (this is
the case of BayesB). Therefore, BayesB and BayesC extend BayesA and BRR, respectively,
by introducing an additional parameter m which in the case of BGLR represents the prior
proportion of non-zero effects. This parameter is treated as unknown and it is assigned a Beta
prior 7 ~ Beta(pg, ), with pg > 0 and 7y € [0, 1]. The beta prior is parameterized in a way
that the expected value by E(7) = mp; on the other hand py can be interpreted as the number

of prior counts (priors “successes” plus prior “failures”); the variance of the Beta distribution
mo(1—m0)

(Pot1) 2
and my = 0.5 gives a uniform prior in the interval [0, 1]. Choosing a very large value for pg

gives a prior that collapses to a point of mass at mg.

is then given by Var(w) = which is inversely proportional to pg. Choosing py = 2

2. Default rules for choosing hyper-parameters

BGLR has built-in rules to set values of hyper-parameters. The default rules assign proper,
but weakly informative, priors with prior modes chosen in a way that, a priori, they obey a
variance partition of the phenotype into components attributable to the error terms and to
each of the elements of the linear predictor. The user can control this variance partition by
setting the argument R2 (representing the model R-squared) of the BGLR function to the
desired value. By default the model R2 is set equal to 0.5, in which case hyper-parameters are
chosen to match a variance partition where 50% of the variance of the response is attributable
to the linear predictor and 50% to model residuals. Each of the elements of the linear
predictor has its own R2 parameter (see last column of Table A1). If these are not provided,
the R2 attributable to each element of the linear predictor equals the R-squared of the model
divided the number of elements in the linear predictor. Once the R2 parameters are set,
BGLR checks whether each of the hyper-parameters have been specified and if not, the built
in-rules are used to set values for these hyper-parameters. Next we briefly describe the built-in
rules implemented in BGLR; these are based on formulas similar to those described by de los
Campos et al. (2013a) implemented using the prior mode instead of the prior mean.

Variance parameters. The residual variance (‘7527 Ugl), of the RKHS model, and ag), of the
BRR, are assigned scaled-inverse Chi-square densities, which are indexed by a scale and a
degree of freedom parameter. By default, if degree of freedom parameter is not specified,
these are set equal to 5 (this gives a relatively un-informative scaled-inverse Chi-square and
guarantees a finite prior variance) and the scale parameter is solved for to match the desired
variance partition. For instance, in case of the residual variance the scale is calculated using
S: = war(y) x (1 — R2) x (df: + 2), this gives a prior mode for the residual variance equal
to var(y) x (1 — R2). Similar rules are used in case of other variance parameters. For
instance, if one element of the linear predictor involves a linear regression of the form X3
with model=‘BRR’ then Sg = var(y) x R2 x (dfsg + 2)/M Sz where M Sz is the sum of the
sample variances of the columns of X and R2 is the proportion of phenotypic variance a-
priori assigned to that particular element of the linear predictor. The selection of the scale
parameter when the model is the RKHS regression is modified relative to the above rule to
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account for the fact that the average diagonal value of K may be different than 1, specifically
we choose the scale parameter according to the following formula S; = var(y) x R2 x (df; +
2)/mean(diag(K)).

In models BayesA and BayesB the scale-parameter indexing the t-prior assigned to marker
effects is assigned a Gamma density with rate and shape parameters r and s, respectively.
By default BGLR sets s = 1.1 and solves for the rate parameter using r = (s — 1)/Sg with
Sg =wvar(y) x R2 x (dfg+2)/M Sz, here, as before, M Sz represents the sum of the variances
of the columns of X.

For the BL, the default is to set: type=‘gamma’, fix the shape parameter of the gamma density
to 1.1 and solve for the rate parameter to match the expected proportion of variance accounted
for by the corresponding element of the linear predictor, as specified by the argument R2.
Specifically, we set the rate to be (s —1)/(2 x (1 — R2)/R2 x M Sx).

For models BayesB and BayesC, the default rule is to set mg = 0.5 and pg = 10. This gives a
weakly informative beta prior for = with a prior mode at 0.5. The scale and degree-of freedom
parameters entering in the priors of these two models are treated as in the case of models
BayesA (in the case of BayesB) and BRR (in the case of BayesC), but the rules are modified
by considering that only a fraction of the markers (7) nave non-null effects; therefore, in
BayesC we use Sg = var(y) x R2 x (dfg +2)/MSxz/m and in BayesB we set r = (s —1)/S3
with Sg = var(y) x R2 x (dfs +2)/MSx/.
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