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Abstract

This introduction to the R package BDgraph is a (slightly) modified version of Mo-
hammadi and Wit (2019a), published in the Journal of Statistical Software.

Graphical models provide powerful tools to uncover complicated patterns in multi-
variate data and are commonly used in Bayesian statistics and machine learning. In this
paper, we introduce an R package BDgraph which performs Bayesian structure learn-
ing for general undirected graphical models (decomposable and non-decomposable) with
continuous, discrete, and mixed variables. The package efficiently implements recent im-
provements in the Bayesian literature, including that of Mohammadi and Wit (2015) and
Dobra and Mohammadi (2018). To speed up computations, the computationally intensive
tasks have been implemented in C++ and interfaced with R, and the package has parallel
computing capabilities. In addition, the package contains several functions for simulation
and visualization, as well as several multivariate datasets taken from the literature and
are used to describe the package capabilities. The paper includes a brief overview of the
statistical methods which have been implemented in the package. The main body of the
paper explains how to use the package.

Keywords: Bayesian structure learning, Gaussian graphical models, Gaussian copula, Covari-
ance selection, Birth-death process, Markov chain Monte Carlo, G-Wishart, BDgraph, R.

1. Introduction

Graphical models (Lauritzen 1996) are commonly used, particularly in Bayesian statistics and
machine learning, to describe the conditional independence relationships among variables in
multivariate data. In graphical models, each random variable is associated with a node in a
graph and links represent conditional dependency between variables, whereas the absence of
a link implies that the variables are independent conditional on the rest of the variables (the
pairwise Markov property).

In recent years, significant progress has been made in designing efficient algorithms to discover
graph structures from multivariate data (Dobra, Lenkoski, and Rodriguez 2011; Dobra and
Lenkoski 2011; Jones, Carvalho, Dobra, Hans, Carter, and West 2005; Dobra and Mohammadi
2018; Mohammadi and Wit 2015; Mohammadi, Abegaz Yazew, van den Heuvel, and Wit
2017a; Friedman, Hastie, and Tibshirani 2008; Meinshausen and Buhlmann 2006; Murray
and Ghahramani 2004; Pensar, Nyman, Niiranen, Corander et al. 2017; Rolfs, Rajaratnam,
Guillot, Wong, and Maleki 2012; Wit and Abbruzzo 2015a,b; Dyrba, Grothe, Mohammadi,
Binder, Kirste, Teipel, Initiative et al. 2018; Behrouzi and Wit 2019). Bayesian approaches
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provide a principled alternative to various penalized approaches.

In this paper, we describe the BDgraph package (Mohammadi and Wit 2019b) in R (R Core
Team 2019) for Bayesian structure learning in undirected graphical models. The package can
deal with Gaussian, non-Gaussian, discrete and mixed datasets. The package includes vari-
ous functional modules, including data generation for simulation, several search algorithms,
graph estimation routines, a convergence check and a visualization tool; see Figure 1. Our
package efficiently implements recent improvements in the Bayesian literature, including those
of Mohammadi and Wit (2015); Mohammadi et al. (2017a); Dobra and Mohammadi (2018);
Lenkoski (2013); Mohammadi, Massam, and Gerald (2017b); Dobra and Lenkoski (2011); Hoff
(2007). For a Bayesian framework of Gaussian graphical models, we implement the method
developed by Mohammadi and Wit (2015) and for Gaussian copula graphical models we use
the method described by Mohammadi et al. (2017a) and Dobra and Lenkoski (2011). To
make our Bayesian methods computationally feasible for moderately high-dimensional data,
we efficiently implement the BDgraph package in C++ linked to R. To make the package easy
to use, the BDgraph package uses several S3 classes as return values of its functions. The
package is available under the general public license (GPL ≥ 3) from the Comprehensive R
Archive Network (CRAN) at http://cran.r-project.org/packages=BDgraph.

In the Bayesian literature, the BDgraph is one of the few R packages which is available online
for Gaussian graphical models and Gaussian copula graphical models. Another R package is
ssgraph (Mohammadi 2019) which is based on spike-and-slab proir. On the other hand, more
packages seem to be available in the frequentist literature. The existing packages include huge
(Zhao, Liu, Roeder, Lafferty, and Wasserman 2019), glasso (Friedman, Hastie, and Tibshirani
2018), bnlearn (Scutari 2010), pcalg (Kalisch, Mächler, Colombo, Maathuis, and Bühlmann
2012), netgwas (Behrouzi and Wit 2017), and QUIC (Hsieh, Sustik, Dhillon, and Ravikumar
2011, 2014).

In Section 2 we illustrate the user interface of the BDgraph package. In Section 3 we explain
some methodological background of the package. In this regard, in Section 3.1 we briefly
explain the Bayesian framework for Gaussian graphical models for continuous data. In Section
3.2 we briefly describe the Bayesian framework in the Gaussian copula graphical models for
data that do not follow the Gaussianity assumption, such as non-Gaussian continuous, discrete
or mixed data. In Section 4 we describe the main functions implemented in the BDgraph
package. In addition, we explain the user interface and the performance of the package by a
simple simulation example.

2. User interface

In the R environment, one can access and load the BDgraph package by using the following
commands:

R> install.packages( "BDgraph" )

R> library( "BDgraph" )

By loading the BDgraph package we automatically load the igraph (Csardi and Nepusz 2006)
package, since the BDgraph package depends on this package for graph visualization. The
igraph package is available on the Comprehensive R Archive Network (CRAN) at http:

//CRAN.R-project.org.
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To speed up computations, we efficiently implement the BDgraph package by linking the C++
code to R. The computationally extensive tasks of the package are implemented in parallel in
C++ using OpenMP (Board 2008). For the C++ code, we use the highly optimized LAPACK
(Anderson, Bai, Bischof, Blackford, Demmel, Dongarra, Du Croz, Greenbaum, Hammarling,
McKenney, and Sorensen 1999) and BLAS (Lawson, Hanson, Kincaid, and Krogh 1979)
linear algebra libraries on systems that provide them. The use of these libraries significantly
improves program speed.

We design the BDgraph package to provide a Bayesian framework for undirected graph esti-
mation of different types of datasets such as continuous, discrete or mixed data. The package
facilitates a pipeline for analysis by three functional modules; see Figure 1. These modules
are as follows:

> Continuous

> Discrete

> Mixed

M1: Data

> Binary

> GGMs

> DGMs

> GCGMs

M2: Methods M3: Algorithm M3: Results

> Convergence

> Selection

> Comparison

> Visualization

> BDMCMC

> RJMCMC

> Hill Climbing

bdgraph.sim()

graph.sim()

bdgraph(data,method=”ggm”, algorithm=“bdmcmc”)

bdgraph.mpl(,method=“ggm”,algorithm=“bdmcmc”)

ssgraph(data, method=“ggm”)

plinks(), select(), 

compare(), 

plotcoda() 

Figure 1: Configuration of the BDgraph package which includes three main parts: (M1) data
simulation, (M2) several statistical methods, (M3) several search algorithms, (M4) various
functions to evaluate convergence of the search algorithms, estimation of the true graph,
assessment and comparison of the results and graph visualization.

Module 1. Data simulation: Function bdgraph.sim simulates multivariate Gaussian, dis-
crete, binary, and mixed data with different undirected graph structures, including "random",
"cluster", "scale-free", "lattice", "hub", "star", "circle", "AR(1)", "AR(2)", and
"fixed" graphs. Users can determine the sparsity of the graph structure and can gener-
ate mixed data, including "count", "ordinal", "binary", "Gaussian" and "non-Gaussian"

variables.

Module 2. Methods: The function bdgraph and bdgraph.mpl provide several estimation
methods regarding to the type of data:

• Bayesian graph estimation for the multivariate data that follow the Gaussianity as-
sumption, based on the Gaussian graphical models (GGMs); see Mohammadi and Wit
(2015); Dobra et al. (2011).

• Bayesian graph estimation for multivariate non-Gaussian, discrete, and mixed data,
based on Gaussian copula graphical models (GCGMs); see Mohammadi et al. (2017a);
Dobra and Lenkoski (2011).

• Bayesian graph estimation for multivariate discrete and binary data, based on discrete
graphical models (DGMs); see Dobra and Mohammadi (2018).
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Module 3. Algorithms: The function bdgraph and bdgraph.mpl provide several sampling
algorithms:

• Birth-death MCMC (BDMCMC) sampling algorithms (Algorithms 2 and 3) desciribed
in Mohammadi and Wit (2015).

• Reversible jump MCMC (RJMCMC) sampling algorithms desciribed in Dobra and
Lenkoski (2011).

• Hill-climbing (HC) search algorithm desciribed in Pensar et al. (2017).

Module 4. Results: Includes four types of functions:

• Graph selection: The functions select, plinks, and pgraph provide the selected
graph, the posterior link inclusion probabilities and the posterior probability of each
graph, respectively.

• Convergence check: The functions plotcoda and traceplot provide several visual-
ization plots to monitor the convergence of the sampling algorithms.

• Comparison and goodness-of-fit: The functions compare and plotroc provide sev-
eral comparison measures and an ROC plot for model comparison.

• Visualization: The plotting functions plot.bdgraph and plot.sim provide visual-
izations of the simulated data and estimated graphs.

3. Methodological background

In Section 3.1, we briefly explain the Gaussian graphical model for multivariate data. Then we
illustrate the birth-death MCMC algorithm for sampling from the joint posterior distribution
over Gaussian graphical models; for more details see Mohammadi and Wit (2015). In Section
3.2, we briefly describe the Gaussian copula graphical model (Dobra and Lenkoski 2011),
which can deal with non-Gaussian, discrete or mixed data. Then we explain the birth-death
MCMC algorithm which is designed for the Gaussian copula graphical models; for more details
see Mohammadi et al. (2017a).

3.1. Bayesian Gaussian graphical models

In graphical models, each random variable is associated with a node and conditional depen-
dence relationships among random variables are presented as a graph G = (V,E) in which
V = {1, 2, ..., p} specifies a set of nodes and a set of existing links E ⊂ V ×V (Lauritzen 1996).
Our focus here is on undirected graphs, in which (i, j) ∈ E ⇔ (j, i) ∈ E. The absence of a
link between two nodes specifies the pairwise conditional independence of those two variables
given the remaining variables, while a link between two variables determines their conditional
dependence.

In Gaussian graphical models (GGMs), we assume that the observed data follow multivariate
Gaussian distribution Np(µ,K

−1). Here we assume µ = 0. Let Z = (Z(1), ..., Z(n))> be the
observed data of n independent samples, then the likelihood function is

Pr(Z|K,G) ∝ |K|n/2 exp

{
−1

2
tr(KU)

}
, (1)
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where U = Z>Z.

In GGMs, conditional independence is implied by the form of the precision matrix. Based
on the pairwise Markov property, variables i and j are conditionally independent given the
remaining variables, if and only if Kij = 0. This property implies that the links in graph
G = (V,E) correspond with the nonzero elements of the precision matrix K; this means that
E = {(i, j)|Kij 6= 0}. Given graph G, the precision matrix K is constrained to the cone PG

of symmetric positive definite matrices with elements Kij equal to zero for all (i, j) /∈ E.

We consider the G-Wishart distribution WG(b,D) to be a prior distribution for the precision
matrix K with density

Pr(K|G) =
1

IG(b,D)
|K|(b−2)/2 exp

{
−1

2
tr(DK)

}
1(K ∈ PG), (2)

where b > 2 is the degrees of freedom, D is a symmetric positive definite matrix, IG(b,D) is
the normalizing constant with respect to the graph G and 1(x) evaluates to 1 if x holds, and
otherwise to 0. The G-Wishart distribution is a well-known prior for the precision matrix,
since it represents the conjugate prior for multivariate Gaussian data as in (1).

For full graphs, the G-Wishart distribution reduces to the standard Wishart distribution,
hence the normalizing constant has an explicit form (Muirhead 1982). Also, for decomposable
graphs, the normalizing constant has an explicit form (Roverato 2002); however, for non-
decomposable graphs, it does not. In that case it can be estimated by using the Monte Carlo
method (Atay-Kayis and Massam 2005), the Laplace approximation (Lenkoski and Dobra
2011), or recent approximation by Mohammadi et al. (2017b). In the BDgraph package, we
design the gnorm function to estimate the log of the normalizing constant by using the Monte
Carlo method proposed Atay-Kayis and Massam (2005).

Since the G-Wishart prior is a conjugate prior to the likelihood (1), the posterior distribution
of K is

Pr(K|Z, G) =
1

IG(b∗, D∗)
|K|(b∗−2)/2 exp

{
−1

2
tr(D∗K)

}
,

where b∗ = b+ n and D∗ = D + S, that is, WG(b∗, D∗).

Direct sampler from G-Wishart

Several sampling methods from the G-Wishart distribution have been proposed; to review
existing methods see Wang and Li (2012). More recently, Lenkoski (2013) has developed
an exact sampling algorithm for the G-Wishart distribution, borrowing an idea from Hastie,
Tibshirani, and Friedman (2009).

In the BDgraph package, we use Algorithm 1 to sample from the posterior distribution of the
precision matrix. We implement the algorithm in the package as a function rgwish; see the
R code below for illustration.

R> adj <- matrix( c( 0, 0, 1, 0, 0, 0, 1, 0, 0 ), 3, 3 )

R> adj

[,1] [,2] [,3]

[1,] 0 0 1

[2,] 0 0 0

[3,] 1 0 0
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Algorithm 1 . Exact sampling from the precision matrix

Input: A graph G = (V,E) with precision matrix K and Σ = K−1

Output: An exact sample from the precision matrix.
1: Set Ω = Σ
2: repeat
3: for i = 1, ..., p do
4: Let Ni ⊂ V be the neighbor set of node i in G. Form ΩNi and ΣNi,i and solve

β̂∗i = Ω−1Ni
ΣNi,i

5: Form β̂i ∈ Rp−1 by padding the elements of β̂∗i to the appropriate locations and zeros
in those locations not connected to i in G

6: Update Ωi,−i and Ω−i,i with Ω−i,−iβ̂i
7: end for
8: until convergence
9: return K = Ω−1

R> sample <- rgwish( n = 1, adj = adj, b = 3, D = diag( 3 ) )

R> round( sample, 2 )

[,1] [,2] [,3]

[1,] 2.37 0.00 -2.12

[2,] 0.00 6.15 0.00

[3,] -2.12 0.00 7.26

This matrix is a sample from a G-Wishart distribution with b = 3 and D = I3 as an identity
matrix and a graph structure with adjacency matrix adj.

BDMCMC algorithm for GGMs

Consider the joint posterior distribution of the graph G and the precision matrix K given by

Pr(K,G | Z) ∝ Pr(Z | K) Pr(K | G) Pr(G). (3)

For the prior distribution of the graph G = (V,E), we consider a Bernoulli prior on each link
inclusion indicator variable as follow

Pr(G) ∝
(

θ

1− θ

)|E|
, (4)

where |E| indicate the number of links in the graph G (graph size) and parameter θ ∈ (0, 1) is
a prior probability of existing link. For the case θ = 0.5 (as a default option of the BDgraph),
we will have a uniform distribution over all graph space, as a non-informative prior. For the
prior distribution of the precision matrix conditional on the graph G, we use a G-Wishart
WG(b,D).

Here we consider a computationally efficient birth-death MCMC sampling algorithm proposed
by Mohammadi and Wit (2015) for Gaussian graphical models. The algorithm is based on a
continuous time birth-death Markov process, in which the algorithm explores the graph space
by adding/removing a link in a birth/death event.
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In the birth-death process, for a particular pair of graph G = (V,E) and precision matrix K,
each link dies independently of the rest as a Poisson process with death rate δe(K). Since the
links are independent, the overall death rate is δ(K) =

∑
e∈E δe(K). Birth rates βe(K) for

e /∈ E are defined similarly. Thus the overall birth rate is β(K) =
∑

e/∈E βe(K).

Since the birth and death events are independent Poisson processes, the time between two
successive events is exponentially distributed with mean 1/(β(K) + δ(K)). The time between
successive events can be considered as inverse support for any particular instance of the state
(G,K). The probabilities of birth and death events are

Pr(birth of link e) =
βe(K)

β(K) + δ(K)
, for each e /∈ E, (5)

Pr(death of link e) =
δe(K)

β(K) + δ(K)
, for each e ∈ E. (6)

The birth and death rates of links occur in continuous time with the rates determined by the
stationary distribution of the process. The BDMCMC algorithm is designed in such a way
that the stationary distribution is equal to the target joint posterior distribution of the graph
and the precision matrix (3).

Mohammadi and Wit (2015, Theorem 3.1) derived a condition that guarantees the above
birth and death process converges to our target joint posterior distribution (3). By following
their Theorem we define the birth and death rates, as below

βe(K) = min

{
Pr(G+e,K+e|Z)

Pr(G,K|Z)
, 1

}
, for each e /∈ E, (7)

δe(K) = min

{
Pr(G−e,K−e|Z)

Pr(G,K|Z)
, 1

}
, for each e ∈ E, (8)

in which G+e = (V,E ∪ {e}) and K+e ∈ PG+e and similarly G−e = (V,E \ {e}) and K−e ∈
PG−e . For computation part related to the ratio of posterior see Mohammadi et al. (2017b).

Algorithm 2 provides the pseudo-code for our BDMCMC sampling scheme which is based on
the above birth and death rates.

Algorithm 2 . BDMCMC algorithm for GGMs

Input: A graph G = (V,E) and a precision matrix K.
Output: Samples from the joint posterior distribution of (G,K), (3), and waiting times.
1: for N iteration do
2: 1. Sample from the graph. Based on birth and death process
3: 1.1. Calculate the birth rates by (7) and β(K) =

∑
e∈/∈E βe(K)

4: 1.2. Calculate the death rates by (8) and δ(K) =
∑

e∈E δe(K)
5: 1.3. Calculate the waiting time by W (K) = 1/(β(K) + δ(K))
6: 1.4. Simulate the type of jump (birth or death) by (5) and (6)
7: 2. Sample from the precision matrix. By using Algorithm 1.
8: end for

Note, step 1 of the algorithm is suitable for parallel computation. In the BDgraph, we imple-
ment this step of algorithm in parallel using OpenMP in C++ to speed up the computations.
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The BDMCMC sampling algorithm is designed in such a way that a sample (G,K) is ob-
tained at certain jump moments, {t1, t2, ...} (see Figure 2). For efficient posterior inference
of the parameters, we use the Rao-Blackwellized estimator, which is an efficient estimator for
continuous time MCMC algorithms (Cappé, Robert, and Rydén 2003, Section 2.5). By using
the Rao-Blackwellized estimator, for example, one can estimate the posterior distribution of
the graphs proportional to the total waiting times of each graph.

G"
G#
G$

G%
G&
G'

Pr G data timet' t& t% t$ t# t" t- .Pr G data

G GG

W'

G"
G#
G$

G%
G&
G'

BDMCMC sampling algorithm scheme Estimated graph
distribution

Graph distribution

W&

Figure 2: This image visualizes the Algorithm 2. The left side shows the true posterior
distribution of the graph. The middle panel presents a continuous time BDMCMC sampling
algorithm where {W1,W2, ...} denote waiting times and {t1, t2, ...} denote jumping times. The
right side denotes the estimated posterior probability of the graphs in proportion to the total
of their waiting times, according to the Rao-Blackwellized estimator.

3.2. Gaussian copula graphical models

In practice we encounter both discrete and continuous variables; Gaussian copula graphical
modelling has been proposed by Dobra and Lenkoski (2011) to describe dependencies between
such heterogeneous variables. Let Y (as observed data) be a collection of continuous, binary,
ordinal or count variables with the marginal distribution Fj of Yj and F−1j as its pseudo
inverse. For constructing a joint distribution of Y, we introduce a multivariate Gaussian
latent variable as follows:

Z1, ..., Zn
iid∼ Np(0,Γ(K)),

Yij = F−1j (Φ(Zij)), (9)

where Γ(K) is the correlation matrix for a given precision matrix K. The joint distribution
of Y is given by

Pr (Y1 ≤ Y1, . . . , Yp ≤ Yp) = C(F1(Y1), . . . , Fp(Yp) | Γ(K)), (10)

where C(·) is the Gaussian copula given by

C(u1, . . . , up | Γ) = Φp

(
Φ−1(u1), . . . ,Φ−1(up) | Γ

)
,
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with uv = Fv(Yv) and Φp(·) is the cumulative distribution of multivariate Gaussian and Φ(·)
is the cumulative distribution of univariate Gaussian distributions. It follows that Yv =
F−1v (Φ(Zv)) for v = 1, ..., p. If all variables are continuous then the margins are unique;
thus zeros in K imply conditional independence, as in Gaussian graphical models (Hoff 2007;
Abegaz and Wit 2015). For discrete variables, the margins are not unique but still well-defined
(Nelsen 2007).

In semiparametric copula estimation, the marginals are treated as nuisance parameters and
estimated by the rescaled empirical distribution. The joint distribution in (10) is then
parametrized only by the correlation matrix of the Gaussian copula. We are interested to
infer the underlying graph structure of the observed variables Y implied by the continuous
latent variables Z. Since Z are unobservable we follow the idea of Hoff (2007) of associating
them with the observed data as below.

Given the observed data Y from a sample of n observations, we constrain the samples from
latent variables Z to belong to the set

D(Y) = {Z ∈ Rn×p : Lr
j(Z) < z

(r)
j < U r

j (Z), r = 1, . . . , n; j = 1, . . . , p},

where

Lr
j(Z) = max

{
Z

(s)
j : Y

(s)
j < Y

(r)
j

}
and U r

j (Z) = min
{
Z

(s)
j : Y

(r)
j < Y

(s)
j

}
. (11)

Following Hoff (2007) we infer the latent space by substituting the observed data Y with the
event D(Y) and define the likelihood as

Pr(Y | K,G,F1, ..., Fp) = Pr(Z ∈ D(Y) | K,G) Pr(Y | Z ∈ D(Y),K,G, F1, ..., Fp).

The only part of the observed data likelihood relevant for inference on K is Pr(Z ∈ D(Y) |
K,G). Thus, the likelihood function is given by

Pr(Z ∈ D(Y) | K,G) = Pr(Z ∈ D(Y) | K,G) =

∫

D(Y)
Pr(Z | K,G)dZ (12)

where Pr(Z | K,G) is defined in (1).

BDMCMC algorithm for GCGMs

The joint posterior distribution of the graph G and precision matrix K for the GCGMs is

Pr(K,G|Z ∈ D(Y)) ∝ Pr(K,G)Pr(Z ∈ D(Y)|K,G). (13)

Sampling from this posterior distribution can be done by using the birth-death MCMC al-
gorithm. Mohammadi et al. (2017a) have developed and extended the birth-death MCMC
algorithm to more general cases of GCGMs. We summarize their algorithm as follows:

In step 1, the latent variables Z are sampled conditional on the observed data Y. The other
steps are the same as in Algorithm 2.

Remark: in cases where all variables are continuous, we do not need to sample from latent
variables in each iteration of Algorithm 2, since all margins in the Gaussian copula are unique.
Thus, for these cases, we transfer our non-Gaussian data to Gaussian, and then we run
Algorithm 2; see Mohammadi and Wit (2019a, Section 6.2).
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Algorithm 3 . BDMCMC algorithm for GCGMs

Input: A graph G = (V,E) and a precision matrix K.
Output: Samples from the joint posterior distribution of (G,K), (13), and waiting times.
1: for N iteration do
2: 1. Sample the latent data. For each r ∈ V and j ∈ {1, ..., n}, we update the latent

values from its full conditional distribution as follows

Z(j)
r |ZV \{r} = z

(j)
V \{r},K ∼ N(−

∑

r′
Krr′z

(j)
r′ /Krr, 1/Krr),

truncated to the interval
[
Lj
r(Z), U j

r (Z)
]

in (11).

3: 2. Sample from the graph. Same as step 1 in Algorithm 2.
4: 3. Sample from the precision matrix. By using Algorithm 1.
5: end for

Alternative RJMCMC algorithm

RJMCMC is a special case of the trans-dimensional MCMC methodology Green (2003). The
RJMCMC approach is based on an ergodic discrete-time Markov chain. In graphical models,
a RJMCMC algorithm can be designed in such a way that its stationary distribution is the
joint posterior distribution of the graph and the parameters of the graph, e.g., 3 for GGMs
and 13 for GCGMs.

A RJMCMC can be implemented in various different ways. Giudici and Green (1999) im-
plemented this algorithm only for the decomposable GGMs, because of the expensive com-
putation of the normalizing constant IG(b,D). The RJMCMC approach developed by Dobra
et al. (2011) and Dobra and Lenkoski (2011) is based on the Cholesky decomposition of the
precision matrix. It uses an approximation for dealing with the extensive computation of the
normalizing constant. To avoid the intractable normalizing constant calculation, Lenkoski
(2013) and Wang and Li (2012) implemented a special case of RJMCMC algorithm, which
is based on the exchange algorithm (Murray, Ghahramani, and MacKay 2012). Our imple-
mentation of RJMCMC algorithm in the BDgraph package defines the acceptance probability
proportional to the birth/death rates in our BDMCMC algorithm. Moreover, we implement
the exact sampling of G-Wishart distribution, as described in Section 3.1.1. Besides, we using
the result of Mohammadi et al. (2017b) for the ratio of the normalizing constant of G-Wishart
distribution.

4. The BDgraph environment

The BDgraph package provides a set of comprehensive tools related to Bayesian graphical
models; we describe below the essential functions available in the package.

4.1. Posterior sampling

We design the function bdgraph, as the main function of the package, to take samples from
the posterior distributions based on both of our Bayesian frameworks (GGMs and GCGMs).
By default, the bdgraph function is based on underlying sampling algorithms (Algorithms 2
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and 3). Moreover, as an alternative to those BDMCMC sampling algorithms, we implement
RJMCMC sampling algorithms for both the Gaussian and non-Gaussian frameworks. By
using the following function

bdgraph( data, n = NULL, method = "ggm", algorithm = "bdmcmc", iter = 5000,

burnin = iter / 2, not.cont = NULL, g.prior = 0.5, df.prior = 3,

g.start = "empty", jump = NULL, save = FALSE, print = 1000, cores = NULL,

threshold = 1e-8 )

we obtain a sample from our target joint posterior distribution. bdgraph returns an object
of S3 class type “bdgraph”. The functions plot, print and summary are working with the
object “bdgraph”. The input data can be an (n× p) matrix or a data.frame or a covariance
(p× p) matrix (n is the sample size and p is the dimension); it can also be an object of class
“sim”, which is the output of function bdgraph.sim.

The argument method determines the type of methods, GGMs, GCGMs. Option “ggm” is
based on Gaussian graphical models (Algorithm 2) that is designed for multivariate Gaussian
data. Option “gcgm” is based on the GCGMs (Algorithm 3) that is designed for non-Gaussian
data such as, non-Gaussian continuous, discrete or mixed data.

The argument algorithm refers the type of sampling algorithms which could be based on
BDMCMC or RJMCMC. Option “bdmcmc” (as default) is for the BDMCMC sampling algo-
rithms (Algorithms 2 and 3). Option “rjmcmc” is for the RJMCMC sampling algorithms,
which are alternative algorithms. See Mohammadi and Wit (2015, Section 4), Mohammadi
et al. (2017a, Section 2.2.3).

The argument g.start specifies the initial graph for our sampling algorithm. It could be
empty (default) or full. Option empty means the initial graph is an empty graph and full

means a full graph. It also could be an object with S3 class "bdgraph", which allows users
to run the sampling algorithm from the last objects of the previous run.

The argument jump determines the number of links that are simultaneously updated in the
BDMCMC algorithm.

For parallel computation in C++ which is based on OpenMP (Board 2008), user can use
argument cores which specifies the number of cores to use for parallel execution.

Note, the package BDgraph has two other sampling functions, bdgraph.mpl and bdgraph.ts

which are designed in the similar framework as the function bdgraph. The function bdgraph.mpl

is for Bayesian model determination in undirected graphical models based on marginal pseudo-
likelihood, for both continuous and discrete variables; For more details see Dobra and Mo-
hammadi (2018). The function bdgraph.ts is for Bayesian model determination in time series
graphical models (Tank, Foti, and Fox 2015).

4.2. Posterior graph selection

We design the BDgraph package in such a way that posterior graph selection can be done based
on both Bayesian model averaging (BMA), as default, and maximum a posterior probability
(MAP). The functions select and plinks are designed for the objects of class bdgraph to
provide BMA and MAP estimations for posterior graph selection.

The function

plinks( bdgraph.obj, round = 2, burnin = NULL )
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provides estimated posterior link inclusion probabilities for all possible links, which is based
on BMA estimation. In cases where the sampling algorithm is based on BDMCMC, these
probabilities for all possible links e = (i, j) in the graph can be estimated using a Rao-
Blackwellized estimate (Cappé et al. 2003, Section 2.5) based on

Pr(e ∈ E|data) =

∑N
t=1 1(e ∈ E(t))W (K(t))
∑N

t=1W (K(t))
, (14)

where N is the number of iteration and W (K(t)) are the weights of the graph G(t) with the
precision matrix K(t).

The function

select( bdgraph.obj, cut = NULL, vis = FALSE )

provides the inferred graph based on both BMA (as default) and MAP estimators. The in-
ferred graph based on BMA estimation is a graph with links for which the estimated posterior
probabilities are greater than a certain cut-point (as default cut=0.5). The inferred graph
based on MAP estimation is a graph with the highest posterior probability.

Note, for posterior graph selection based on MAP estimation we should save all adjacency
matrices by using the option save = TRUE in the function bdgraph. Saving all the adjacency
matrices could, however, cause memory problems; to see how we cope with this problem the
reader is referred to Mohammadi and Wit (2019a, Appendix).

4.3. Convergence check

In general, convergence in MCMC approaches can be difficult to evaluate. From a theoretical
point of view, the sampling distribution will converge to the target joint posterior distribution
as the number of iteration increases to infinity. Because we normally have little theoretical
insight about how quickly MCMC algorithms converge to the target stationary distribution we
therefore rely on post hoc testing of the sampled output. In general, the sample is divided into
two parts: a “burn-in” part of the sample and the remainder, in which the chain is considered
to have converged sufficiently close to the target posterior distribution. Two questions then
arise: How many samples are sufficient? How long should the burn-in period be?

The plotcoda and traceplot are two visualization functions for the objects of class bdgraph
that make it possible to check the convergence of the search algorithms in BDgraph. The
function

plotcoda( bdgraph.obj, thin = NULL, control = TRUE, main = NULL, ... )

provides the trace of estimated posterior probability of all possible links to check convergence
of the search algorithms. Option control is designed for the case where if control=TRUE (as
default) and the dimension (p) is greater than 15, then 100 links are randomly selected for
visualization.

The function

traceplot( bdgraph.obj, acf = FALSE, pacf = FALSE, main = NULL, ... )
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provides the trace of graph size to check convergence of the search algorithms. Option acf

is for visualization of the autocorrelation functions for graph size; option pacf visualizes the
partial autocorrelations.

4.4. Comparison and goodness-of-fit

The functions compare and plotroc are designed to evaluate and compare the performance
of the selected graph. These functions are particularly useful for simulation studies. With
the function

compare( target, est, est2 = NULL, est3 = NULL, est4 = NULL, main = NULL,

vis = FALSE )

we can evaluate the performance of the Bayesian methods available in our BDgraph package
and compare them with alternative approaches. This function provides several measures such
as the balanced F -score measure (Baldi, Brunak, Chauvin, Andersen, and Nielsen 2000),
which is defined as follows:

F1-score =
2TP

2TP + FP + FN
, (15)

where TP, FP and FN are the number of true positives, false positives and false negatives,
respectively. The F1-score lies between 0 and 1, where 1 stands for perfect identification and
0 for no true positives.

The function

plotroc( target, est, est2 = NULL, est3 = NULL, est4 = NULL, cut = 20,

smooth = FALSE, label = TRUE, main = "ROC Curve" )

provides a ROC plot for visualization comparison based on the estimated posterior link in-
clusion probabilities.

4.5. Data simulation

The function bdgraph.sim is designed to simulate different types of datasets with various
graph structures. The function

bdgraph.sim( p = 10, graph = "random", n = 0, type = "Gaussian", prob = 0.2,

size = NULL, mean = 0, class = NULL, cut = 4, b = 3, D = diag( p ),

K = NULL, sigma = NULL, vis = FALSE )

can simulate multivariate Gaussian, non-Gaussian, discrete, binary and mixed data with dif-
ferent undirected graph structures, including "random", "cluster", "scale-free", "lattice",
"hub", "star", "circle", "AR(1)", "AR(2)", and "fixed" graphs. Users can specify the
type of multivariate data by option type and the graph structure by option graph. They
can determine the sparsity level of the obtained graph by using option prob. With this func-
tion users can generate mixed data from "count", "ordinal", "binary", "Gaussian" and
"non-Gaussian" distributions. bdgraph.sim returns an object of the S3 class type “sim”.
Functions plot and print work with this object type.

There is another function in the BDgraph package with the name graph.sim which is designed
to simulate different types of graph structures. The function
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graph.sim( p = 10, graph = "random", prob = 0.2, size = NULL, class = NULL,

cut = 4, vis = FALSE )

can simulate different undirected graph structures, including "random", "cluster", "scale-free"’,
"lattice", "hub", "star", and "circle" graphs. Users can specify the type of graph struc-
ture by option graph. They can determine the sparsity level of the obtained graph by using
option prob. bdgraph.sim returns an object of the S3 class type “graph”. Functions plot

and print work with this object type.

5. An example on simulated data

We illustrate the user interface of the BDgraph package by use of a simple simulation. We
perform all the computations on an MacBook Pro with 2.9 GHz Intel Core i7 processor. By
using the function bdgraph.sim we simulate 60 observations (n = 60) from a multivariate
Gaussian distribution with 8 variables (p = 8) and “scale-free” graph structure, as below.

R> data.sim <- bdgraph.sim( n = 60, p = 8, graph = "scale-free",

+ type = "Gaussian" )

R> round( head( data.sim $ data, 4 ), 2 )

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

[1,] 0.72 -0.91 -1.23 -0.16 0.20 -0.47 0.08 1.07

[2,] 0.25 -0.11 0.09 0.53 0.10 -0.04 -0.13 -0.67

[3,] -0.42 -0.09 -0.28 -0.42 2.04 0.84 -0.79 1.24

[4,] -0.33 -0.50 0.68 -1.33 -1.15 0.25 -0.35 2.97

Since the generated data are Gaussian, we run the BDMCMC algorithm which is based on
Gaussian graphical models. For this we choose method = "ggm", as follows:

R> sample.bdmcmc <- bdgraph( bdgraph( data = data.sim, method = "ggm",

+ algorithm = "bdmcmc", iter = 5000, save = TRUE )

We choose option “save = TRUE” to save the samples in order to check convergence of the
algorithm. Running this function takes less than one second, as the computational intensive
tasks are performed in C++ and interfaced with R.

Since the function bdgraph returns an object of class S3, users can see the summary result
as follows

R> summary( sample.bdmcmc )

$selected_g

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

[1,] 0 1 1 0 0 0 1 0

[2,] 0 0 0 1 0 0 0 0

[3,] 0 0 0 0 0 1 0 0

[4,] 0 0 0 0 0 0 0 1
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[5,] 0 0 0 0 0 0 0 0

[6,] 0 0 0 0 0 0 0 0

[7,] 0 0 0 0 0 0 0 0

[8,] 0 0 0 0 0 0 0 0

$p_links

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

[1,] 0 0.51 1.00 0.27 0.21 0.31 0.74 0.11

[2,] 0 0.00 0.29 1.00 0.25 0.18 0.49 0.14

[3,] 0 0.00 0.00 0.24 0.27 0.79 0.44 0.22

[4,] 0 0.00 0.00 0.00 0.32 0.30 0.34 1.00

[5,] 0 0.00 0.00 0.00 0.00 0.25 0.40 0.22

[6,] 0 0.00 0.00 0.00 0.00 0.00 0.23 0.37

[7,] 0 0.00 0.00 0.00 0.00 0.00 0.00 0.19

[8,] 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00

$K_hat

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

[1,] 3.81 0.33 3.19 -0.09 0.04 0.14 -0.84 0.02

[2,] 0.33 4.24 -0.06 -3.43 -0.07 -0.02 0.41 -0.02

[3,] 3.19 -0.06 5.54 -0.08 -0.06 -0.75 0.41 0.08

[4,] -0.09 -3.43 -0.08 9.28 -0.15 0.10 -0.18 1.62

[5,] 0.04 -0.07 -0.06 -0.15 0.76 -0.06 0.16 -0.04

[6,] 0.14 -0.02 -0.75 0.10 -0.06 3.08 0.04 -0.14

[7,] -0.84 0.41 0.41 -0.18 0.16 0.04 5.56 0.04

[8,] 0.02 -0.02 0.08 1.62 -0.04 -0.14 0.04 1.21

The summary results are the adjacency matrix of the selected graph (selected_g) based on
BMA estimation, the estimated posterior probabilities of all possible links (p_links) and the
estimated precision matrix (K_hat).

In addition, the function summary reports a visualization summary of the results as we can
see in Figure 3. At the top-left is the graph with the highest posterior probability. The plot
at the top-right gives the estimated posterior probabilities of all the graphs which are visited
by the BDMCMC algorithm; it indicates that our algorithm visits more than 2000 different
graphs. The plot at the bottom-left gives the estimated posterior probabilities of the size of
the graphs; it indicates that our algorithm visited mainly graphs with sizes between 4 and 18
links. At the bottom-right is the trace of our algorithm based on the size of the graphs.

The function compare provides several measures to evaluate the performance of our algorithms
and compare them with alternative approaches with respect to the true graph structure. To
evaluate the performance of our BDMCMC algorithm (Algorithm 2) and compare it with that
of an alternative algorithm, we also run the RJMCMC algorithm under the same conditions
as below.

R> sample.rjmcmc <- bdgraph( data = data.sim, method = "ggm",

+ algorithm = "rjmcmc", iter = 5000, save = TRUE )
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Figure 3: Visualization summary of simulation data based on output of bdgraph function.
The figure at the top-left is the inferred graph with the highest posterior probability. The
figure at the top-right gives the estimated posterior probabilities of all visited graphs. The
figure at the bottom-left gives the estimated posterior probabilities of all visited graphs based
on the size of the graphs. The figure at in the bottom-right is the trace of our algorithm
based on the size of the graphs.

where the sampling algorithm from the joint posterior distribution is based on the RJMCMC
algorithm.

Users can compare the performance of these two algorithms by using the code

R> plotroc( data.sim, sample.bdmcmc, sample.rjmcmc, smooth = TRUE )

which visualizes an ROC plot for both algorithms, BDMCMC and RJMCMC; see Figure 4.

We can also compare the performance of those algorithms by using the compare function as
follows:

R> compare( data.sim, sample.bdmcmc, sample.rjmcmc,

+ main = c( "True graph", "BDMCMC", "RJMCMC" ) )

True graph BDMCMC RJMCMC

true positive 7 5.000 5.000

true negative 21 20.000 19.000
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Figure 4: ROC plot to compare the performance of the BDMCMC and RJMCMC algorithms
for a simulated toy example.

false positive 0 1.000 2.000

false negative 0 2.000 2.000

F1-score 1 0.769 0.714

specificity 1 0.952 0.905

sensitivity 1 0.714 0.714

MCC 1 0.704 0.619

The results show that for this specific simulated example both algorithms have more or less
the same performance; See Mohammadi and Wit (2015, Section 4), Mohammadi et al. (2017a,
Section 2.2.3).

In this simulation example, we run both BDMCMC and RJMCMC algorithms for 5, 000
iterations, 2, 500 of them as burn-in. To check whether the number of iterations is enough
and to monitoring the convergence of our both algorithm, we run

R> plotcoda( sample.bdmcmc )

R> plotcoda( sample.rjmcmc )

The results in Figure 5 indicate that our BDMCMC algorithm converges faster with compare
with RJMCMC algorithm.
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