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Abstract

We present the R package BASS as a tool for nonparametric regression. The primary
focus of the package is fitting fully Bayesian adaptive spline surface (BASS) models and
performing global sensitivity analyses of these models. The BASS framework is similar to
that of Bayesian multivariate adaptive regression splines (BMARS) from Denison, Mallick,
and Smith (1998), but with many added features. The software is built to efficiently
handle significant amounts of data with many continuous or categorical predictors and
with functional response. Under our Bayesian framework, most priors are automatic but
these can be modified by the user to focus on parsimony and the avoidance of overfitting.
If directed to do so, the software uses parallel tempering to improve the reversible jump
Markov chain Monte Carlo (RJMCMC) methods used to perform inference. We discuss
the implementation of these features and present the performance of BASS in a number
of analyses of simulated and real data.
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1. Introduction

The purpose of the R (R Core Team 2020) package BASS (Francom 2020) is to provide an
easy-to-use implementation of Bayesian adaptive spline models for nonparametric regression.
It provides a combination of flexibility, scalability, interpretability and probabilistic accuracy
that can be difficult to find in other nonparametric regression software packages. The model
form is flexible enough to capture local features that may be present in the data. It is scalable
to moderately large datasets in both the number of predictors and the number of observations.
It performs automatic variable selection. It can build nonparametric functional regression
models and incorporate categorical predictors. The package can partition the variability of a
resultant model using a nonlinear ANOVA decomposition, providing valuable interpretation
to the predictors. The Bayesian approach allows for model estimates and predictions that
can be evaluated probabilistically. The package is protected under the GNU General Public
License, version 3 (GPL-3), and is available from the Comprehensive R Archive Network
(CRAN) at https://CRAN.R-project.org/package=BASS.

The BASS framework builds on multivariate adaptive regression splines (MARS) from Fried-
man (1991b). Well-developed software implementations of the MARS model are available in
the R packages earth, polspline and mda. The Bayesian version of MARS (BMARS) was first
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developed in Denison et al. (1998). A MATLAB implementation of BMARS is available from
the software website accompanying Denison, Holmes, Mallick, and Smith (2002).

Our implementation is more similar to the BMARS implementation, though with some sub-
stantial changes to methodology as described in Francom, Sansó, Kupresanin, and Johan-
nesson (2018) and Francom, Sansó, Bulaevskaya, Lucas, and Simpson (2019). The primary
motivation for developing this software was building surrogate models (or emulators) for
complex and computationally expensive simulators (or computer models). In particular, we
wanted to build a fast and accurate surrogate model to use for uncertainty quantification
in the presence of a large number of simulations and where each simulation had functional
output. Attributing the variance in the response of the surrogate to different combinations of
predictors, a practice known as global sensitivity analysis, is a valuable tool for determining
which predictors and interactions are important. One of the major benefits of polynomial
spline surrogate models is that sensitivity analysis can be done analytically. The BASS pack-
age has this functionality for scalar and functional response models with both continuous and
categorical inputs.

There are a number of other R packages that use splines, such as crs, gss, mgcv and R2BayesX,
the latter two of which include possible Bayesian inference methods. These packages allow
(or require) the user to specify which variables are allowed to interact in what way, as well as
which variables are allowed to have nonlinear main effects. The crs package is more similar
to the packages that fit MARS models in that it can learn the structure of the model from
the data. These packages report a single best model. BASS reports an ensemble of models
(posterior draws from the model space) that can be used to make probabilistic predictions.
In this way, it is more similar to Bayesian nonparametric regression packages like BART and
tgp.

We introduce the package as follows. In Section 2, we describe the modeling framework,
including our methods for posterior sampling, modeling functional responses, and incorpo-
rating categorical inputs. In Section 3, we describe the sensitivity analysis methods. Then,
in Section 4, we walk through six examples of how to use the package. These are done with
knitr in order to be reproducible by the reader. Finally, in Section 5, we present a summary
of the package capabilities.

2. Bayesian adaptive spline surfaces

The BASS model, like the MARS and BMARS models, uses data to learn a set of data
dependent basis functions that are tensor products of polynomial splines. The number of
basis functions as well as the knots and variables used in each basis are chosen adaptively.
The BMARS approach uses reversible jump Markov chain Monte Carlo (RJMCMC) (Green
1995) to sample the posterior. The BASS adaptation of BMARS includes the improvements of
Nott, Kuk, and Duc (2005) for more efficient posterior sampling as well as parallel tempering
for better posterior exploration. BASS also efficiently handles functional responses and allows
for categorical variables. We discuss each of these aspects below. First, we introduce the BASS
model and priors.

Let yi denote the dependent variable and xi denote a vector of p independent variables, with
i = 1, . . . , n. Without loss of generality, let each independent variable be scaled to be between
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zero and one. We model yi as

yi = f(xi) + ǫi, ǫi ∼ N(0, σ2) (1)

f(x) = a0 +
M
∑

m=1

amBm(x) (2)

Bm(x) =

Km
∏

k=1

gkm[skm(xvkm − tkm)]α+ (3)

where skm ∈ {−1, 1} is referred to as a sign, tkm ∈ [0, 1] is a knot, vkm selects a variable, Km

is the degree of interaction and gkm = [(skm + 1)/2− skmtkm]α is a constant that makes the
basis function have a maximum of one. The function [·]+ is defined as max(0, ·). The power
α determines the degree of the polynomial splines. We allow for no repeats in v1m, . . . , vKmm,
meaning that a variable can be used only once in each basis function. M is the number of
basis functions, and a is the M + 1 vector of basis coefficients (including the intercept). The
only difference between this setup and that of MARS and BMARS is the inclusion of the
constant gkm in each element of the tensor product. This normalizes the basis functions so
that the basis coefficients a1, . . . , aM are on the same scale, making computations more stable.

In the course of fitting this model, we seek to estimate θ = {σ2,M,a,K, s, t,v} where K

is the M -vector of interaction degrees, s is the vector of signs {{skm}Km

k=1
}Mm=1, t the vector

of knots and v the vector of variables used (with t and v defined similar to s). Under the
Bayesian formulation, we specify a prior distribution for θ.

First, consider the priors for the σ2 and a. Let B be the n× (M +1) matrix of basis functions
(including the intercept). Then we use Zellner’s g-prior (Liang, Paulo, Molina, Clyde, and
Berger 2008) for a with

a|σ2, τ,B ∼ N(0, σ2(B⊤B)−1/τ) (4)

σ2 ∼ InvGamma(g1, g2) (5)

τ ∼ Gamma(aτ , bτ ) (6)

with default settings aτ = 1/2 and bτ = 2/n (shape and rate), which is the Zellner–Siow
Cauchy prior, and g1 = g2 = 0 resulting in the non-informative prior p(σ2) ∝ 1/σ2. In
practice, the default settings are sufficient for most cases, though it can be helpful to encode
actual prior information into the prior for σ2.

Now, consider the prior for the number of basis functions, M . We use a Poisson prior for
M , truncated to be between 0 and Mmax. We give a Gamma hyperprior to the mean of the
Poisson, λ. If c is the Poisson mass that has been truncated, i.e., c = 1−

∑Mmax

m=0
e−λλm/m!,

then we have

p(M |λ) =
e−λλM

cM !
1(M ≤ Mmax) (7)

λ ∼ Gamma(h1, h2) (8)

where 1(·) is the indicator function and the default settings of h1 = h2 = 10 (shape and rate)
in most cases induce a small number of basis functions. In practice, these hyperparameters
can be key in order to prevent overfitting. More specifically, we increase h2 (by orders of
magnitude in some cases) to bring the prior for λ close to zero in an effort to thin out the
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tails of the Poisson and have fewer basis functions. We use Mmax to give an upper bound
to the computational cost, rather than to prevent overfitting. This strategy results in better
fitting models since setting Mmax too small can result in poor RJMCMC mixing. Poor
mixing of this sort is due to the fact that the primary way to search the model space with our
RJMCMC algorithm is through adding a new basis function, deleting a current basis function,
or modifying a current basis function. If we are at the maximum number of basis functions,
we can only explore further by modifying the current set of basis functions or deleting basis
functions. However, deleting basis functions can be difficult, because they may all be useful
enough that deleting one causes a significant drop in the model likelihood. On the other hand,
if we are allowed to add a few new basis functions, we may be able to traverse the model
space to a different posterior mode, at which point we may be able to delete some of the old
basis functions.

The priors for K, s, t and v are uniform over a constrained space as described in Francom
et al. (2018). The constraint in this prior makes sure basis functions have more than b non-
zero values. Note that a basis function, as shown in Equation 3, is likely to have many zeros
in it depending on how close the knot is to the edge of the space. If a knot is too close to
the edge of the space, there might only be a few non-zero values in the basis function. A
basis function with only a few non-zero values corresponds to very local fitting and usually
results in edge effects (i.e., extreme variance at the edges of the space). If we calculate the
number of non-zero points in basis function m to be bm, this prior requires that bm > b.
This is the BASS equivalent of specifying a minimum number of points in each partition in
recursive partitioning. In addition to specifying b, we also specify Kmax, the maximum degree
of interaction for each basis function.

Table 1 shows the parameters used in the bass function that we have discussed thus far, and
what their mathematical symbols are.

Symbol Kmax b h1 h2 g1 g2 α Mmax aτ bτ
bass input maxInt npart h1 h2 g1 g2 degree maxBasis a.tau b.tau

Table 1: Translation from mathematical symbols to parameters used in bass function.

2.1. Efficient posterior sampling

Posterior sampling is complicated by the fact that the model is transdimensional (since M
is unknown). Our RJMCMC scheme allows us to add, delete, or change a basis function
consistent with the approach of Nott et al. (2005). That is, instead of proposing to add a
completely random new basis function in a reversible jump step, we use a proposal generating
distribution that favors the variables and degrees of interaction already included in the model.
For example, say there were four basis functions already in the model, each with degree of
interaction two. Say the maximum degree of interaction was three. Then if we were proposing
a new basis function we would sample the degree of interaction from {1, 2, 3} with weights
proportional to {w1, w1 + 4, w1}, thus favoring two way interactions since we have seen more
of them. If the nominal weight w1 is large compared to the number of basis functions, this
distribution looks more uniform. The value w2 is the equivalent nominal weight for sampling
variables to be included in a candidate basis function. Both w1 and w2 default to five. If
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there are a large number of unimportant variables in the data, a small value of w2 (relative
to M) helps to make posterior sampling more efficient by not proposing basis functions that
include the unimportant variables.

We extend the framework of Nott et al. (2005) to allow for more than two-way interactions.
This ends up being non-trivial, since the RJMCMC acceptance ratio requires us to calculate
the probability of sampling the proposed basis function. The difficulty comes when we try to
calculate the probability of sampling the particular variables, as this requires calculating the
probability of a weighted sample without replacement (weighted because we do not sample
variables uniformly, without replacement because variables cannot be used more than once
in the same basis function). This is equivalent to sampling from the multivariate Wallenius’
noncentral hypergeometric distribution. In earlier versions of BASS, we determined the prob-
ability of such a sample using a function from the R package BiasedUrn (Fog 2015). Since the
CRAN version of BiasedUrn allows for only 32 possible variables, we included a slightly al-
tered version of the function in BASS to quickly evaluate the approximate density function of
the multivariate Wallenius’ noncentral hypergeometric distribution. In the current version of
BASS, we have implemented a simplified multivariate Wallenius’ noncentral hypergeometric
distribution better fit for this specific purpose.

The computation behind posterior sampling becomes much more efficient when we recognize
that each RJMCMC iteration only allows slight changes to our set of basis functions. Thus,
quantities like B⊤B, Ba and B⊤y can easily be updated rather than recalculated, as shown
in Francom et al. (2018).

We perform NMCMC RJMCMC iterations and discard the first Nburn, after which every Nthin

iterations is kept. This results in (NMCMC − Nburn)/Nthin posterior samples. Table 2 shows
the parameters to the bass function discussed in this section, as well as their mathematical
symbols.

Symbol w1 w2 NMCMC Nburn Nthin

bass input w1 w2 nmcmc nburn thin

Table 2: Translation from mathematical symbols to parameters used to specify nominal
weights of proposal distributions and number of RJMCMC iterations in the bass function.

2.2. Parallel tempering

Posterior sampling with RJMCMC is prone to mixing problems (problems exploring all of
the parameter space). In our case, this is because only slight changes to the basis functions
can be made in each iteration. Thus, once we start sampling from one mode of the posterior,
it can be hard to move to another mode if it requires changing many of the basis functions
(Gramacy, Samworth, and King 2010).

We are able to achieve better mixing by using parallel tempering. This requires the specifi-
cation of a temperature ladder, 1 = t1 < t2 < · · · < tT < ∞. For each temperature in the
temperature ladder, a RJMCMC chain samples the posterior raised to the inverse temper-
ature (i.e., if π(θ|y) is the posterior of interest, we sample from π(θ|y)1/ti). The chains at
neighboring temperatures are allowed to swap states according to a Metropolis-Hastings ac-
ceptance ratio (see Francom et al. (2018) and references therein). Only samples in the lowest
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temperature chain (t1) are used for inference. The high temperature chains mix over many
posterior modes, allowing diverse models to be propagated to the low temperature chain. We
allow the chains to run without swapping for Nst iterations at the beginning of the run to
allow them to get close to their stationary distributions.

Specifying a temperature ladder can be difficult. Temperatures need to be close enough to
each other to allow for frequent swaps (with acceptance rates between 20 and 60% (Altekar,
Dwarkadas, Huelsenbeck, and Ronquist 2004)), and the highest temperature (tT ) needs to
be high enough to be able to explore all the modes. Future versions of this package may
make some attempt at automatically specifying and altering a temperature ladder. Further,
a message passing interface (MPI) approach to handling the multiple chains could result in
substantial speedup, and may be implemented in future versions of the package.

Table 3 shows the translation from parameters used for parallel tempering in the bass function
to symbols we have used in this section.

Symbol (t1, . . . , tT ) Nst

bass input temp.ladder start.temper

Table 3: Translation from mathematical symbols to parameters used for parallel tempering
in the bass function.

2.3. Functional response

The BASS package has two implementations of methods to use for functional response mod-
eling.

Augmentation approach

The augmentation approach handles functional responses as though the variable indexing
the functional response, like time or location, is one of the independent variables. When the
functional response is output onto the same functional variable grid for all samples, this results
in more efficient calculations involving basis functions because of the Khatri-Rao product
structure (Francom et al. 2018). For example, this software is well suited to fit a model where
the data are such that a combination of independent variables results in a time-series and the
grid of times (say, r1, . . . , rq) is the same for each combination.

If there are multiple functional variables, we must specify a maximum degree of interaction
for them, KF

max. For instance, if the functional output was a spatiotemporal field (a function
of three variables) and we specify a maximum degree of functional interaction of two, we
would not allow for interactions between both spatial dimensions and time. We would specify
the grid of spatial locations and time points as a matrix with three columns rather than a
vector like we did in the time series example above. We can also specify a value bF , possibly
different from b, that indicates the number of non-zero values required in the functional part
of basis functions. When functional responses are included, the values of b and bF should be
relative to the sample size and the size of the functional grid, respectively.

Table 4 shows parameters necessary to model functional responses with the augmentation
approach in the bass function. The response y should be specified as a matrix when the
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response is functional.

Symbol (r1, . . . , rq) KF
max bF

bass input xx.func maxInt.func npart.func

Table 4: Translation from mathematical symbols to parameters used in the bass function
when modeling functional data.

Basis expansion approach

The second approach that the BASS package can use for modeling functional responses re-
quires decomposing the functional response onto a set of basis functions U = [u1, . . . ,uNu

],
so that the matrix of functional responses Y = UΦ, where each column of Y is a (flattened)
functional response, and Y has n columns. Hence Φ is the Nu × n matrix of weights in
the basis decomposition. Often, we will center and scale the functional responses using the
pointwise mean (µ) and standard deviation (κ) of the functional responses before taking
the basis decomposition. For dimension reduction purposes, we often use only a subset of
nu ≤ Nu basis functions, denoted U∗ with corresponding subset weights Φ∗. Our approach
to functional response modeling is then to fit independent models for the weights in the basis
decomposition (Francom et al. 2019). If Yij is the response for the jth functional variable
setting using inputs xi, this approach models Yij with

Yij =

nu
∑

l=1

U∗

ljφ
∗

l (xi) (9)

φ∗

l (xi) ∼ univariate BASS model (10)

where φ∗

l (xi) ≡ φ∗

li is modeled with the same specification given in Equation 1, so that
φ∗

li = fl(xi) + ǫli, ǫli ∼ N(0, σ2
l ). These models are fit independently, and thus can be done

in parallel. In other words, this approach makes nu independent calls to the bass function.

This approach can often provide more accurate results than the augmentation approach, and
if the number of available threads is greater than nu, this can be done in the same amount of
time it takes to fit a single univariate model.

Table 5 shows parameters necessary to model functional responses with the general basis
function approach in the bassBasis function (these parameters are passed as a list). Note
that the shortcut function bassPCA calculates a principal component basis given the matrix
y and fits the corresponding models, and thus requires only a subset of these parameters (not
passed as a list).

Symbol X nu U∗ Φ∗ µ κ

bassBasis input xx n.pc basis newy y.m y.s

Table 5: Translation from mathematical symbols to parameters used in the bassBasis func-
tion when modeling functional data. A subset of these parameters are used in the bassPCA

function.



8 BASS: Bayesian Adaptive Spline Surfaces

2.4. Categorical inputs

We include categorical variables by allowing for basis functions to include indicators for cate-
gorical variables being in certain categories. Our approach is the Bayesian version of Friedman
(1991a) and is described in Francom et al. (2019). If a set of independent variables is sep-
arated into continuous variables x and categorical variables c, then the mth basis function
equivalent of Equation 3 can be written as

Bm(x, c) =

Km
∏

k=1

gkm[skm(xvkm − tkm)]α+

Kc
m

∏

l=1

1
(

cvc
lm

∈ Clm

)

(11)

where Kc
m is the degree of interaction for the categorical predictors, 1(·) is the indicator

function, vclm indexes the categorical variables and Clm is a subset of the categories for variables
cvc

lm
. We now allow for Km or Kc

m to be zero, and specify a Kc
max (maxInt.cat in the bass

function).

The priors we use for the degree of interaction, variables used and categories used are, in
combination with the priors we used above, the same constrained uniform. Thus, basis
function (Bm(x1, c1), . . . , Bm(xn, cn)) is required to have at least b non-zero values.

3. Sensitivity analysis

Global sensitivity analysis for nonlinear models using the Sobol’ decomposition (Sobol’ 2001)
is well developed, but often requires large numbers of evaluations of the models for Monte
Carlo approximation of integrals (Saltelli, Ratto, Andres, Campolongo, Cariboni, Gatelli,
Saisana, and Tarantola 2008). The benefit of polynomial spline models is that Monte Carlo
approximation is unnecessary because the integrals can be calculated analytically.

The method decomposes a function f(x) into main effects, two way interactions, and so on,
up to p way interactions so that

f(x) = f0 +

p
∑

i=1

fi(xi) +

p
∑

i=1

∑

j>i

fij(xi, xj) + · · ·+ f1···p(x1, . . . , xp). (12)

Each term in the sum above is constructed so that it is centered at zero and orthogonal to
all the other terms. This can be done by calculating the centered (conditional) expectations

f0 =

∫

f(x)p(x)dx (13)

fi(xi) =

∫

f(x)p(x)dx−i − f0 (14)

fij(xi, xj) =

∫

f(x)p(x)dx−ij − fi(xi)− fj(xj)− f0 (15)

etc., for all the terms in Equation 12. It is often assumed that x is independent uniform
distributed, though the BASS package allows for more complex distributions, still with the
assumption of independence. Since the terms in Equation 12 are orthogonal and zero-centered,

E(f2(x)) = f2
0 +

p
∑

i=1

E
(

f2
i (xi)

)

+

p
∑

i=1

∑

j>i

E
(

f2
ij(xi, xj)

)

+ · · ·+ E
(

f2
1···p(x1, . . . , xp)

)

. (16)
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Using the fact that V ar(f(x)) = E(f2(x)) − f2
0 and that E(fi1···is(xi1···is)) = 0 for all terms

except f0,

V ar(f(x)) =

p
∑

i=1

V ar(fi(xi)) +

p
∑

i=1

∑

j>i

V ar(fij(xi, xj)) + · · ·+ V ar(f1···p(x1, . . . , xp)). (17)

This is a decomposition of the variance of the model into variance due to each main effect, each
two way interaction (after accounting for the associated main effects), etc. Under independent
uniform p(x) (as well as some others), all of these integrals are analytical, with solutions given
in Francom et al. (2018). Sensitivity indices for main effects and interactions are then defined
as proportions of the total variance. Total sensitivity for a particular variable can then
be gauged by adding the main effect and all interactions associated with that variable and
comparing to the total sensitivity indices for other variables.

We can obtain this variance decomposition for each posterior sample to get posterior dis-
tributions of sensitivity indices. This can be time consuming, so the sobol function has an
argument mcmc.use to specify which RJMCMC iterations should be used. Calculations of the
integrals above can be vectorized when basis functions are the same and only basis function
coefficients change. This is the case for many of the RJMCMC iterations, and the sobol

function automatically determines this and accounts for it. (As a side note, this is also the
case for the predict function).

3.1. Functional response

There are a few ways to think about sensitivity analysis for models with functional response.
One way is to get the sensitivity indices for the functional variables in the same way we get
the sensitivity indices for the rest of the variables. This results in a total variance decom-
position. Another approach is to obtain functional sensitivity indices, which would tell us
how important a variable or interaction is as we change the functional variable. This can be
done by following the procedure just mentioned, but simply not integrating over the func-
tional variable. Hence, all of the expectations above would be conditional on the functional
variable. These approaches are explored in Francom et al. (2018) and Francom et al. (2019).

By default, the sobol function gets sensitivity indices for the functional variables the same way
it does for the other variables. Setting func.var = 1 gets the sensitivity indices as functions
of the first (possibly only) functional variable (if there are multiple functional variables, this
refers to the first column of the matrix xx.func passed to the bass function).

On the other hand, the sobolBasis function (used on an object obtained using bassBasis

or bassPCA) gets functional sensitivity indices by default. Because of the complexity of these
integrals across the models for the different basis function coefficients, this function can often
be sped up significantly by performing the integrals in parallel (using the n.cores parameter).

3.2. Categorical inputs

Under our categorical input extension, the necessary expectations to obtain the Sobol’ de-
composition are still analytical, as described in Francom et al. (2019). For the categorical
variables, we replace the integrals with sums over categories.
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4. Examples

We now demonstrate the capabilities of the package on a few examples. For each example,
we start by setting the seed (set.seed(0)) so that readers can replicate the results. First we
load the package

R> library("BASS")

which we use for all the examples.

4.1. Curve fitting

We first demonstrate how the package can be used for curve fitting. We generate y ∼
N(f(x), 1) where x ∈ [−5, 5] and

f(x) =

{

−0.1x3 + 2 sin(πx2)(x− 4)2 0 < x < 4

−0.1x3 otherwise
(18)

for 1000 samples of x. The data are shown in Figure 3.

We generate the data with the following code.

R> set.seed(0)

R> f <- function(x) {

+ -.1 * x^3 + 2 * as.numeric((x < 4) * (x > 0)) * sin(pi * x^2) * (x - 4)^2

+ }

R> sigma <- 1

R> n <- 1000

R> x <- runif(n, -5, 5)

R> y <- rnorm(n, f(x), sigma)

We then call the bass function to fit a BASS model using the default settings.

R> mod<-bass(x, y)

MCMC Start #-- May 06 11:55:31 --# nbasis: 0

MCMC iteration 1000 #-- May 06 11:55:33 --# nbasis: 21

MCMC iteration 2000 #-- May 06 11:55:34 --# nbasis: 21

MCMC iteration 3000 #-- May 06 11:55:36 --# nbasis: 23

MCMC iteration 4000 #-- May 06 11:55:37 --# nbasis: 24

MCMC iteration 5000 #-- May 06 11:55:39 --# nbasis: 22

MCMC iteration 6000 #-- May 06 11:55:40 --# nbasis: 22

MCMC iteration 7000 #-- May 06 11:55:42 --# nbasis: 25

MCMC iteration 8000 #-- May 06 11:55:43 --# nbasis: 22

MCMC iteration 9000 #-- May 06 11:55:45 --# nbasis: 22

MCMC iteration 10000 #-- May 06 11:55:46 --# nbasis: 23

The result is an object that can be used for prediction and sensitivity analysis. By default,
the bass function prints progress after each 1000 MCMC iterations, along with the number
of basis functions. To diagnose the fit of the model, we call the plot function.
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Figure 1: Diagnostic plots for BASS model fitting.

R> plot(mod)

This generates the four plots shown in Figure 1. The top left and right plots show trace plots
(after burn-in and excluding thinned samples) of the number of basis functions (M) and the
error variance (σ2). The bottom left plot shows the response values plotted against the the
posterior mean predictions (with equal tail posterior probability intervals as specified by the
quants parameter). The bottom right plot shows a histogram of the posterior mean residuals
along with the assumed Gaussian distribution centered at zero and with variance taken to be
the posterior mean of σ2. This is for checking the Normality assumption.

Next, we can generate posterior predictions at new inputs, which we generate as x.test.

R> n.test <- 1000

R> x.test <- sort(runif(n.test, -5, 5))

R> pred <- predict(mod, x.test, verbose = T)

Predict Start #-- May 06 11:55:47 --# Models: 40

By default, the predict function generates posterior predictive distributions for all of the
inputs. We can use a subset of posterior samples by specifying the parameter mcmc.use.
For instance, mcmc.use = 1:5 will use the first five posterior samples (after burn-in and
excluding thinned samples), and will thus be faster. Rather than iterating through the MCMC
samples to generate predictions, we instead iterate through “models.” The model changes
when the basis functions change, which means that we can build the basis functions once
and perform vectorized operations for predictions for all the MCMC iterations with the same
basis functions.
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Figure 2: BASS prediction on test data.

The object resulting from the predict function is a matrix with rows corresponding to MCMC
samples and columns corresponding to settings of x.test. Thus, the posterior mean predic-
tions are obtained by taking the column means. We plot the posterior predictive means
against the true values of f(x) as shown in Figure 2.

R> fx.test <- f(x.test)

R> plot(fx.test, colMeans(pred))

R> abline(a = 0, b = 1, col = 2)

Note that the predictive distributions in the columns of pred are for f(x). To obtain pre-
dictive distributions for data, we would need to include Gaussian error with variance σ2

(demonstrated in Section 4.5). Posterior samples of σ2 are given in mod$s2.

In the curve fitting case, we can plot predicted curves. Below, we plot 10 posterior predictive
samples along with the true curve (Figure 3). We also show knot locations (in the rug along
the x-axis) for one of the posterior samples.

R> plot(x, y, cex = .5)

R> curve(f(x), add = T, lwd = 3, n = 1000, col = 2, lty = 2)

R> matplot(x.test, t(pred[seq(100, 1000, 100), ]), type='l', add=T, col=3)

R> rug(BASS:::unscale.range(mod$curr.list[[1]]$knots.des, range(x)))

R> legend('topright', legend = c('true curve', 'posterior predictive draws'),

+ col = c(2:3), lty = c(2, 1), lwd = c(3, 1), bty = 'n')

If we are interested in using fewer knots (fewer basis functions), we can change the prior for
the number of basis functions to be more restrictive. For instance, setting h2=100

R> mod <- bass(x, y, h2 = 100)

R> pred <- predict(mod, x.test)

R> plot(x, y, cex = .5)

R> curve(f(x), add = T, lwd = 3, n = 1000, col = 2, lty = 2)
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Figure 3: True curve with posterior predictive draws.

R> matplot(x.test, t(pred[seq(100, 1000, 100), ]), type='l', add=T, col=3)

R> rug(BASS:::unscale.range(mod$curr.list[[1]]$knots.des, range(x)))

R> legend('topright', legend = c('true curve', 'posterior predictive draws'),

+ col = c(2:3), lty = c(2, 1), lwd = c(3, 1), bty = 'n')

results in knots as shown along the x-axis of Figure 4. This results in fewer knots, but perhaps
slight underfitting in the part of the curve around x = 3. The h2 parameter can be used to
prevent overfitting, but the setting is not intuitive. Thus, this parameter may require tuning
(perhaps by cross-validation).

Two final issues to discuss with this example are why we use linear splines (the default degree
= 1) and how to tell if we have achieved convergence before taking MCMC samples as posterior
samples. We use linear splines almost exclusively when using this package because of their
stability and ability to capture nonlinear curves and surfaces. Using a higher degree, such
as degree = 3, results in smoother models but suffers from stability problems and is more
difficult to fit. We suggest settings of degree other than degree = 1 be used with care, always
with scrutiny of prediction performance. Convergence is best assessed by examining the trace
plots shown in Figure 1. Especially if the trace plot for σ2 shows any sort of non-cyclical
pattern, the sampler should be run for longer. As a side note, a new sampler can be started
from where the old sampler left off by using the curr.list parameter. For instance, we can
run mod2 <- bass(x, y, curr.list = mod$curr.list) to start a new sampler from where
mod left off.

4.2. Friedman function

For our next example, we will test the package on the Friedman function (Friedman 1991b).
This function will have 10 inputs, five of which contribute nothing. The other five are used
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Figure 4: True curve with posterior predictive draws and more restrictive prior on the number
of basis functions.

to generate

f(x) = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5. (19)

We generate 200 input samples uniformly from a unit hypercube, calculate f(x) for each and
add standard Normal error to obtain data to model.

R> set.seed(0)

R> f <- function(x) {

+ 10 * sin(pi * x[, 1] * x[, 2]) + 20 * (x[, 3] - .5)^2 +

+ 10 * x[, 4] + 5 * x[, 5]

+ }

R> sigma <- 1

R> n.vars <- 10

R> n <- 200

R> x <- matrix(runif(n * n.vars), n, n.vars)

R> y <- rnorm(n, f(x), sigma)

Here we will show how we can change the length of the MCMC chain and use parallel tem-
pering. We run the RJMCMC chain for 40000 iterations, discarding the first 30000 as burn-in
and thinning by keeping every tenth sample. We supply a temperature ladder with smallest
value one (the “cold chain”, or true posterior) and largest value 11.03 (the “hottest” chain)
using geometric spacing. Thus, ti = (1 + ∆t)

i−1 where ∆t is a spacing parameter we set at
0.35. We use nine chains. By default, chains at neighboring temperatures will be allowed to
swap after the first 1000 iterations.

R> mod <- bass(x, y, nmcmc = 40000, nburn = 30000, thin = 10,

+ temp.ladder = (1 + .35)^(1:9 - 1), verbose = F)
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Figure 5: BASS prediction on test data - Friedman function.

We can generate posterior predictive samples just as we did in the curve fitting example.

R> n.test <- 1000

R> x.test <- matrix(runif(n.test * n.vars), n.test)

R> pred <- predict(mod, x.test, verbose = T)

Predict Start #-- May 06 11:58:11 --# Models: 592

Predict #-- May 06 11:58:11 --# Model: 100

Predict #-- May 06 11:58:11 --# Model: 200

Predict #-- May 06 11:58:11 --# Model: 300

Predict #-- May 06 11:58:12 --# Model: 400

Predict #-- May 06 11:58:12 --# Model: 500

Plotting these samples against true values of f(x) shows that we have a good fit (Figure 5).

R> fx.test <- f(x.test)

R> plot(fx.test, colMeans(pred))

R> abline(a = 0, b = 1, col = 2)

Now that we are considering a function of many variables, we may be interested in sensitivity
analysis. To get the Sobol’ decompostion for each posterior sample, we use the sobol function.

R> sens <- sobol(mod, verbose = F)

Note that when verbose = T, this function prints after every 10 models (as with the predict
function, vectorizing around models rather than MCMC iterations saves a large amount of
time). Depending on the number of basis functions and the number of models, this function
can take significant amounts of time. If that is the case, using a smaller set of MCMC
iterations by specifying mcmc.use may be useful.

The default plotting for this kind of object (Figure 6) shows boxplots of variance explained
for each main effect and interaction that shows up in the BASS model. It also shows boxplots
of the total sensitivity indices.
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Figure 6: BASS sensitivity analysis - Friedman function.
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Figure 7: Most important main effects and interactions - Friedman function.

R> plot(sens, cex.axis = .5)

If there are a large number of main effects or interactions that explain very small percentages
of variation, we can show only the effects that are most significant. For instance, we could
show only the effects that, on average, explain at least 1% of the variance (Figure 7).

R> boxplot(sens$S[, colMeans(sens$S) > .01], las = 2,

+ ylab = 'proportion variance', range = 0)

As expected, we see that almost all of the variance is from the first five variables and the only
strong interaction is between the first two variables.

As a final note for this example, we discuss tempering diagnostics. We would like for neigh-
boring chains to have swap acceptance rate of somewhere around 23%. Running bass with
verbose = T prints these acceptance rates every 1000 iterations. At the completion of the
sampling, we can investigate acceptance rates by dividing the swap counts by the number of
swap proposals, as follows.
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Figure 8: Parallel tempering diagnostics - swap trace plot.

R> mod$count.swap/mod$count.swap.prop

[1] 0.4703961 0.3873609 0.4641745 0.4766776 0.2188010 0.4721832 0.3771823

[8] 0.2198053

Since we have specified nine temperatures, there are eight possible swaps, hence the eight
numbers. If, for example, we wanted to increase the first acceptance rate, we would move the
second temperature closer to the first.

Further analysis of swapping can be done by looking at swap trace plots.

R> matplot(mod$temp.val, type = 'l', ylab = 'temperature index')

Figure 8 shows the swap trace plot where y-axis values are temperature indices (1 is the
true posterior and 9 is the posterior raised to the smallest power), the x-axis shows MCMC
iteration and the colored lines represent the different chains. We want to see these chains
mixing throughout.

Determining whether the smallest value of the temperature ladder is small enough to allow
for good mixing can be difficult. In this example, we could run the model with temp.ladder

= 11.03 and look at mixing diagnostics. One could also look at predicted versus observed
plots at the different temperatures for the last MCMC iteration by executing the following
code, the output of which is shown in Figure 9.

R> par(mfrow=c(3,3))

R> temp.ind <- sapply(mod$curr.list, function(x) x$temp.ind)

R> for(i in 1:length(mod$temp.ladder)) {

+ ind <- which(temp.ind == i)

+ yhat <- mod$curr.list[[ind]]$des.basis %*% mod$curr.list[[ind]]$beta

+ plot(yhat, y, main = round(mod$temp.ladder[i], 2))

+ abline(a = 0, b = 1, col = 2)

+ }
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Figure 9: Predicted versus observed for the last MCMC iteration of the eight chains at
different temperatures. The temperatures are shown above each plot.
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Note that the curr.list object is a list with number of elements equal to the number of
temperatures. This list contains the MCMC state for each chain. Since we swap temperatures
rather than entire states, the chains are not in order according to temperature. We note that
using the default prior for σ2 with a temperature ladder with relatively large values can lead
to instabilities when estimating σ2. In cases where that is clearly the case, the prior for σ2

will be automatically changed and a warning will be generated.

To demonstrate what is different when we use tempering, consider the equivalent BASS model
fit without tempering.

R> mod.noTemp <- bass(x, y, nmcmc = 40000, nburn = 30000,

+ thin = 10, verbose = F)

We compare the root mean square prediction error (RMSE) for the two models, as well as the
empirical coverage of 95% probability intervals. First, the RMSE for the model fit without
tempering

R> pred.noTemp <- predict(mod.noTemp, x.test)

R> sqrt(mean((colMeans(pred.noTemp) - fx.test)^2))

[1] 0.4994824

and the empirical coverage

R> quants.noTemp <- apply(pred.noTemp, 2, quantile, probs = c(.025, .975))

R> mean((quants.noTemp[1, ] < fx.test) & (quants.noTemp[2, ] > fx.test))

[1] 0.887

demonstrate that the fit is quite good. When we use parallel tempering, the RMSE

R> sqrt(mean((colMeans(pred) - fx.test)^2))

[1] 0.4825888

and the empirical coverage

R> quants <- apply(pred, 2, quantile, probs = c(.025, .975))

R> mean((quants[1, ] < fx.test) & (quants[2, ] > fx.test))

[1] 0.915

tend to be moderately better. Under different seeds, we tend to see higher coverage when we
use tempering and lower coverage when we do not. We also tend to get better models in terms
of RMSE when we use tempering. Other benefits of tempering will be shown in later examples.
Because the computational burden is currently linear in the number of temperatures, using
fewer temperatures is better. Thus, for many purposes, the model without tempering may be
good enough.

We also point out that this modeling framework can handle correlated inputs. For instance,
we use the correlation matrix
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Figure 10: BASS prediction on test data - Friedman function with correlated inputs.

R> S <- matrix(.99, nrow=10, ncol=10) + diag(10) * .01

as a covariance matrix for simulated inputs, and rescale them to be between zero and one
so that Friedman function evaluations are comparable to the ones we have used above. The
inputs are all highly correlated. The model fitting and prediction are done without any
changes from what we have done previously.

R> library(MASS)

R> x <- mvrnorm(n, rep(0, 10), S)

R> x <- apply(x, 2, BASS:::scale.range)

R> y <- rnorm(n, f(x), sigma)

R>

R> mod <- bass(x, y, nmcmc = 40000, nburn = 30000, thin = 10,

+ temp.ladder = (1 + .35)^(1:9 - 1), verbose = F)

R>

R> n.test <- 1000

R> x.test <- mvrnorm(n.test, rep(0,10), S)

R> x.test <- apply(x.test, 2, BASS:::scale.range)

R> pred <- predict(mod, x.test)

We still get good prediction, as seen in Figure 10. We abstain from performing a sensitivity
analysis under correlated input assumptions. Note that if we want to assume independence
between the inputs when we do a sensitivity analysis, we can use correlated training data.
However, we will likely be requiring the model to extrapolate outside the training data when
we integrate over independent ranges, which can lead to poor results.

4.3. Friedman function with a categorical variable

In this example, we use data generated from a function similar to the Friedman function in
the previous example but with a categorical variable included. The function, introduced in
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Gramacy and Taddy (2010), has

f(x) =























10 sin(πx1x2) x11 = 1

20(x3 − 0.5)2 x11 = 2

10x4 + 5x5 x11 = 3

5x1 + 10x2 + 20(x3 − 0.5)2 + 10 sin(πx4x5) x11 = 4

(20)

as the mean function and standard Normal error. Again, x6, . . . , x10 are unimportant. We
generate 500 random uniform samples of the first 10 variables and randomly sample 500
values of the four categories of the 11th variable. The bass function treats input variables as
categorical only if they are coded as factors.

R> set.seed(0)

R> f <- function(x) {

+ as.numeric(x[, 11] == 1) * (10 * sin(pi * x[, 1] * x[, 2])) +

+ as.numeric(x[ ,11] == 2) * (20 * (x[, 3] - .5)^2) +

+ as.numeric(x[, 11] == 3) * (10 * x[, 4] + 5 * x[, 5]) +

+ as.numeric(x[, 11] == 4) * (10 * sin(pi * x[, 5] * x[, 4]) +

+ 20 * (x[, 3] - .5)^2 + 10 * x[, 2] + 5 * x[, 1])

+ }

R> sigma <- 1

R> n <- 500

R> x <- data.frame(matrix(runif(n * 10), n, 10),

+ as.factor(sample(1:4, size = n, replace = T)))

R> y <- rnorm(n, f(x), sigma)

We fit a model with tempering and use it for prediction, as in the previous example.

R> mod <- bass(x, y, nmcmc = 40000, nburn = 30000, thin = 10,

+ temp.ladder = (1 + .25)^(1:9 - 1), verbose = F)

R> n.test <- 1000

R> x.test <- data.frame(matrix(runif(n.test * 10), n.test, 10),

+ as.factor(sample(1:4, size = n.test, replace = T)))

R> pred <- predict(mod, x.test)

Plotting posterior predictive samples against true values of f(x) shows that we have a good
fit (Figure 11).

R> fx.test <- f(x.test)

R> plot(fx.test, colMeans(pred))

R> abline(a = 0, b = 1, col = 2)

Sensitivity analysis is performed in the same manner.

R> sens <- sobol(mod)

Plotting the posterior distributions of the most important (explaining more than 0.5% of the
variance) sensitivity indices in Figure 12, we see how important the categorical variable is as
well as which variables it interacts with.
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Figure 11: BASS prediction on test data - Friedman function with categorical predictor.
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Figure 12: Most important main effects and interactions - Friedman function with categorical
predictor.

R> boxplot(sens$S[, colMeans(sens$S) > .005], las = 2,

+ ylab = 'proportion variance', range = 0)

4.4. Friedman function with functional response

Next, we consider an extension of the Friedman function that is functional in one variable
Francom et al. (2018). We use

f(x) = 10 sin(2πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5 (21)

where we treat x1 as the functional variable. Note that we insert a two into the sin function
in order to increase the variability due to x1 and x2, making the problem more challenging.
We generate 500 combinations of x2, . . . , x10 from a uniform hypercube. We generate a grid
of values of x1 of length 50. This ends up being 500×50 combinations of inputs, for which we
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Figure 13: 500 Functional responses. The goal is to fit a functional nonparametric regression
model and perform sensitivity analysis.

evaluate f and add standard Normal error. We keep the responses in a matrix of dimension
500×50 so that each row represents a curve. The inputs are kept separate in a 500×9 matrix
and a grid of length 50.

R> set.seed(0)

R> f<-function(x) {

+ 10 * sin(2 * pi * x[, 1] * x[, 2]) + 20 * (x[, 3] - .5)^2 +

+ 10 * x[, 4] + 5 * x[, 5]

+ }

R> sigma <- 1

R> n <- 500

R> n.func <- 50

R> x.func <- seq(0, 1, length.out = n.func)

R> x <- matrix(runif(n * 9), n)

R> y <- matrix(f(cbind(rep(x.func, each = n),

+ kronecker(rep(1, n.func), x))),

+ ncol = n.func) + rnorm(n * n.func, 0, sigma)

The functional data can be plotted as follows and are shown in Figure 13.

R> matplot(x.func, t(y), type='l')

In order for the BASS package to handle functional responses, each curve needs to be evaluated
on the same grid. Thus, the responses must be able to be stored as a matrix without missing
values.

Augmentation approach

We fit the augmentation functional response model by specifying our matrices x and y as well
as the grid x.func.

R> mod <- bass(x, y, xx.func = x.func)
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Figure 14: BASS prediction performance - Friedman function with functional response.

MCMC Start #-- May 06 12:05:44 --# nbasis: 0

MCMC iteration 1000 #-- May 06 12:05:45 --# nbasis: 67

MCMC iteration 2000 #-- May 06 12:05:47 --# nbasis: 65

MCMC iteration 3000 #-- May 06 12:05:49 --# nbasis: 46

MCMC iteration 4000 #-- May 06 12:05:50 --# nbasis: 46

MCMC iteration 5000 #-- May 06 12:05:51 --# nbasis: 38

MCMC iteration 6000 #-- May 06 12:05:52 --# nbasis: 38

MCMC iteration 7000 #-- May 06 12:05:53 --# nbasis: 39

MCMC iteration 8000 #-- May 06 12:05:54 --# nbasis: 38

MCMC iteration 9000 #-- May 06 12:05:55 --# nbasis: 38

MCMC iteration 10000 #-- May 06 12:05:58 --# nbasis: 38

Prediction is as simple as before. If we want to predict on a different functional grid, we can
specify that in the predict function with newdata.func.

R> n.test <- 100

R> x.test <- matrix(runif(n.test * 9), n.test)

R> pred <- predict(mod, x.test)

Following, we make a functional predicted versus observed plot, shown in Figure 14.

R> fx.test<-matrix(f(cbind(rep(x.func, each = n.test),

+ kronecker(rep(1, n.func), x.test))), ncol=n.func)

R> matplot(t(fx.test), t(apply(pred, 2:3, mean)), type = 'l')

R> abline(a = 0, b = 1, col = 2)

We will demonstrate the two methods of sensitivity analysis discussed in Section 3. First, we
can get the Sobol’ indices for the functional variable and its interactions just as we do the
other variables. This is the default.

R> sens <- sobol(mod, mcmc.use = 1:100)
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Figure 15: Sensitivity analysis - Friedman function with functional response.

Sobol Start #-- May 06 12:06:11 --# Models: 2

Total Sensitivity #-- May 06 12:06:11 --#

When we plot the variance decomposition, as shown in Figure 15, the functional variable is
labeled with the letter “a.” If we had multiple functional variables, they would be labeled with
different letters.

R> plot(sens, cex.axis = .5)

The other approach to sensitivity analysis is to get a functional variance decomposition. This
is done by using the func.var parameter. If there is only one functional variable, we set
func.var = 1. Otherwise we set func.var to the column of xx.func we want to use for our
functional variance decomposition.

R> sens.func <- sobol(mod, mcmc.use = 1:100, func.var = 1)

Sobol Start #-- May 06 12:06:11 --# Models: 2

When we plot the variance decomposition, shown in Figure 16, we we get two plots.

R> plot(sens.func)

The left plot shows the posterior mean (using posterior samples specified with mcmc.use) of
the functional sensitivity indices in a functional pie chart. The right plot shows the variance
decomposition as a function of the functional variable. Thus, the top line in the right plot
is the total variance in y as a function of x1. The bottom line (black) is the total variance
explained by the main effect of x2 as a function of x1. The labels in the plot on the left are
the variable numbers (columns of x).

Basis expansion approach

We will utilize parallel computing in the following examples. The BASS functions that can
utilize multiple threads can do so in two ways: fork or socket, specified with the parType
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Figure 16: Functional sensitivity analysis - Friedman function with functional response.

option. We recommend the fork method, though that is not available on Windows. We
would usually specify n.cores = parallel::detectCores() in these functions, but for the
purposes of making this document compile on CRAN, we limit the number of threads used
with the following specification.

R> if(.Platform$OS.type == 'unix'){

+ nc <- 2

+ } else{

+ nc <- 1

+ }

We should also point out that this kind of explicit parallelism sometimes does not play well
with multithreading that comes from BLAS. Functions in the BASS package benefit from both
forms of parallelism, though we would prefer the explicit parallelism over the multithreading
when possible (which seems to happen by default when using openBLAS).

The basis approach to functional response modeling using a principal component basis can
be done as follows:

R> mod.pca <- bassPCA(x, y, perc.var = 95, n.cores = nc)

R> pred.pca <- predict(mod.pca, x.test)

R> sens.func.pca <- sobolBasis(mod.pca, int.order = 2, mcmc.use = 100,

+ n.cores = nc, verbose = F)

The optional perc.var argument specifies how many principal components should be used
in terms of the percent of variance explained. We could alternately specify n.pc. Then
n.pc BASS models are fit independently, using n.cores threads. To limit computation, the
sobolBasis function requires a specified highest degree of interaction in the decomposition,
int.order, and a single MCMC sample to use, mcmc.use. This function benefits from hav-
ing many threads (often more so than bassPCA). Figure 17 shows the functional variance
decomposition.

R> plot(sens.func.pca)
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Figure 17: Functional sensitivity analysis, PCA space - Friedman function with functional
response.

The bassPCA function is a shortcut to the bassBasis function when we want to use a principal
component basis. For other bases, we use the bassBasis function directly. We demonstrate
this with a wavelet basis below.

First, we must interpolate our functional response data onto a grid of power two.

R> pow2 <- floor(log2(ncol(y)))

R> y.pow2 <- matrix(nrow = n, ncol = 2^pow2)

R> for(i in 1:n) {

+ y.pow2[i,] <- approx(1:ncol(y), y[i, ],

+ xout = seq(1, ncol(y), length.out = 2^pow2))$y

+ }

Then we (optionally) subtract the mean function from each functional response.

R> y.pow2.mean <- colMeans(y.pow2)

R> y.pow2.scale <- sweep(y.pow2, 2, y.pow2.mean)

We use the wmtsa package (Constantine and Percival 2017) to perform the wavelet decom-
position for each functional response.

R> library(wmtsa)

R> coefs.mat <- matrix(nrow = 2^pow2, ncol = n)

R> for(i in 1:nrow(y.pow2.scale)) {

+ w <- wavDWT(y.pow2.scale[i, ])

+ coefs.mat[, i] <- unlist(w$data)

+ }

We then threshold the wavelet coefficients at 5% of the largest magnitude wavelet coefficient.

R> thresh <- .05*max(abs(coefs.mat))

R> use<-unique(which(coefs.mat > thresh, arr.ind = T)[, 1])



28 BASS: Bayesian Adaptive Spline Surfaces

Finally, we specify the matrix of basis functions and our reduced dimension response as part
of the list that will be passed to the bassBasis.

R> basis <- t(wavDWTMatrix(J = pow2, wavelet = "s8"))[ ,use]

R> newy <- coefs.mat[use, ]

R> dat<-list(xx = x, y = y.pow2, n.pc = ncol(basis), basis = basis, newy = newy,

+ y.m = y.pow2.mean, y.s = rep(1, 2^pow2))

Then we can call the bassBasis, predict, and sobolBasis functions.

R> mod.wv <- bassBasis(dat, n.cores = nc)

R> pred.wv <- predict(mod.wv, x.test)

R> sens.func.wv<-sobolBasis(mod.wv, int.order = 2, mcmc.use = 100,

+ n.cores = nc, verbose = F)

To compare predictions, we first interpolate our test data onto a grid of power two.

R> fx.test.pow2 <- matrix(nrow = n.test, ncol = 2^pow2)

R> for(i in 1:n.test) {

+ fx.test.pow2[i,] <- approx(1:ncol(fx.test), fx.test[i, ],

+ xout = seq(1, ncol(fx.test), length.out = 2^pow2))$y

+ }

The prediction accuracy plots for the PCA basis approach and the wavelet basis approach
are shown in Figure 18.

R> par(mfrow=c(1,2))

R> matplot(t(fx.test), t(apply(pred.pca, 2:3, mean)), type = 'l')

R> abline(a = 0, b = 1, col = 2)

R> matplot(t(fx.test.pow2), t(apply(pred.wv, 2:3, mean)), type = 'l')

R> abline(a = 0, b = 1, col = 2)

Finally, we also show the functional Sobol decomposition in Figure 19.

R> plot(sens.func.wv)

4.5. Air foil data

In this example, we consider a NASA data set, obtained from a series of aerodynamic and
acoustic tests of two and three-dimensional airfoil blade sections conducted in an anechoic
wind tunnel (Lichman 2013). The response is scaled sound pressure level, in decibels. There
are five inputs: (1) Frequency, in hertz; (2) angle of attack, in degrees; (3) chord length,
in meters; (4) free-stream velocity, in meters per second; and (5) suction side displacement
thickness, in meters. The data have 1503 combinations of these inputs, some of which are
collinear (variables 2 and 5 have correlation of 0.75).

R> dd <- read.table('https://archive.ics.uci.edu/ml/

+ machine-learning-databases/00291/airfoil_self_noise.dat')
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Figure 18: BASS prediction performance, PCA (left) and wavelet (right) space - Friedman
function with functional response.
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Figure 19: Functional sensitivity analysis, wavelet space - Friedman function with functional
response.
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We set aside 200 input combinations to use for testing.

R> set.seed(0)

R> test <- sample(nrow(dd), size=150)

R> x <- dd[-test, 1:5]

R> y <- dd[-test, 6]

We fit a BASS model using tempering.

R> mod <- bass(x, y, nmcmc = 20000, nburn = 10000, thin = 10,

+ temp.ladder = 1.1^(0:5), verbose = F)

We can predict as we have before. However, this prediction is for the mean function.

R> x.test <- dd[test, 1:5]

R> y.test <- dd[test, 6]

R> pred <- predict(mod, x.test)

Now, if we are interested in predicting actual data rather than the mean function, we can
incorporate uncertainty from our estimate of σ2.

R> pred.error <- pred + matrix(

+ rnorm(nrow(pred) * ncol(pred), 0, sqrt(mod$s2)), nrow = nrow(pred))

R> q1 <- apply(pred.error, 2, quantile, probs = .05)

R> q2 <- apply(pred.error, 2, quantile, probs = .95)

R> mean((q1 < y.test) & (q2 > y.test))

[1] 0.9333333

This puts our empirical coverage near where we would expect it to be. We can plot our 90%
prediction intervals as follows, shown in Figure 20.

R> plot(y.test, colMeans(pred))

R> abline(a = 0, b = 1, col = 2)

R> segments(y.test, q1, y.test, q2, col = 'lightgrey')

Next, we can obtain and plot the Sobol’ decomposition, shown in Figure 21. We disregard
the dependence among the input variables.

R> sens <- sobol(mod, verbose = F)

R> plot(sens)

The uncertainty in the sensitivity indices in Figure 21 is significant and helps us to understand
that there are many possible models for these data that use different variables and interactions.
The proper characterization of this uncertainty would be impossible if our RJMCMC chain
was stuck in a mode. Hence, tempering is important in this problem. By exploring the
posterior modes, tempering allows us to find not just a model that predicts well, but all the
models that predict well.
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Figure 20: Prediction performance - air foil data.
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Figure 21: Sobol decomposition - air foil data.
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4.6. Pollutant spill model

The final example we present is an emulation problem. The simulator is for modeling a
pollutant spill caused by a chemical accident, obtained from Surjanovic and Bingham (2017).
While fast to evaluate, this simulator provides a good testbed for BASS methods. The
simulator has four inputs: (1) Mass of pollutant spilled at each of two locations (range 7−13),
(2) diffusion rate in the channel (0.02− 0.12), (3) location of the second spill (0.01− 3), and
(4) time of the second spill (30.01− 30.295). The simulator outputs a function in space (one
dimension) and time that is the concentration of the pollutant.

We generate 1000 combinations of the four simulator inputs uniformly from within their
respective ranges.

R> set.seed(0)

R> n <- 1000

R> x <- cbind(runif(n, 7, 13), runif(n, .02, .12), runif(n, .01, 3),

+ runif(n, 30.01, 30.295))

We specify six points in space and 20 time points. The functional grid that would be passed
to the bass function would thus have two columns, called x.func below.

R> s <- c(0, 0.5, 1, 1.5, 2, 2.5)

R> t <- seq(.3, 60, length.out = 20)

R> x.func <- expand.grid(t, s)

We will show results when using the bassPCA function rather than the bass function for this
problem. The reader may wish to test different parameter ranges, numbers of simulations,
and functional response modeling approaches. Our experience is that the bassPCA function
performs quite well for this problem, and that various BASS models can handle tens of
thousands of model runs.

We use the environ function available from http://www.sfu.ca/~ssurjano/Code/environr.

html to generate realizations of the simulator. We will model the log of the simulator out-
put, though plume models like this may deserve better thought out transformations, as in
Bliznyuk, Ruppert, Shoemaker, Regis, Wild, and Mugunthan (2008).

R> out <- t(apply(x, 1, environ, s = s, t = t))

R> y <- log(out + .01)

The model is fit as follows.

R> mod <- bassPCA(x, y, n.pc = 20, save.yhat = F,

+ n.cores = nc, verbose = F)

Note that we specify save.yhat = F. By default, the bass function saves in-sample predic-
tions for all MCMC samples (post burn-in and thinned). This can be a significant storage
burden when we have large amounts of functional data, as we do in this case. Changing the
save.yhat parameter can relieve this. If in-sample predictions are of interest, they can be
obtained after model fitting using the predict function.

As with the previous example, prediction here is for the mean function. Whatever error is
left over (in σ2) is inability of the BASS model to pick up high frequency signal.

http://www.sfu.ca/~ssurjano/Code/environr.html
http://www.sfu.ca/~ssurjano/Code/environr.html
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Figure 22: BASS prediction performance - pollutant spill model.

R> n.test <- 1000

R> x.test <- cbind(runif(n.test, 7, 13),runif(n.test, .02, .12),

+ runif(n.test, .01, 3), runif(n.test, 30.01, 30.295))

R> y.test <- log(t(apply(x.test, 1, environ, s = s, t = t)) + .01)

R> pred <- predict(mod, x.test)

A plot of the predicted (mean function) versus observed data is shown in Figure 22.

R> plot(y.test, apply(pred, 2:3, mean))

R> abline(a = 0, b = 1, col = 2)

To see what the predictions look like in space and time, consider the plots shown in Figure
23. These show posterior draws (in grey) of the mean function for one setting of the four
inputs along with simulator output (in red).

R> pp <- pred[, 1, ]

R> ylim <- range(y)

R> par(mfrow=c(2, 3))

R> for(i in 1:length(s)) {

+ ind <- length(t) * (i - 1) + 1:length(t)

+ matplot(t, t(pp[, ind]), type = 'l', col = 'lightgrey',

+ ylim = ylim, main = paste('s =', s[i]))

+ lines(t, y.test[1, ind], col = 2, lwd = 2, lty = 2)

+ }

Below, we show how to get spatio-temporal Sobol’ indices. We limit the models considered
using mcmc.use to speed up computations.

R> sens.func <- sobolBasis(mod, mcmc.use = 1, int.order = 2, verbose = F,

+ n.cores = nc)
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Figure 23: BASS prediction in space and time - pollutant spill model.
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To show plots of the Sobol’ indices over space and time, we can use a similar approach to
what we used to show predictions, above. Here, we limit the effects shown by thresholding
their integrated variance, where we use 1% of the integrated total variance as the cutoff.

R> use <- which(apply(sens.func$S.var, 2, mean) > mean(sens.func$Var.tot) * .01)

R> par(mfrow=c(2, 3))

R> for(i in 1:length(s)) {

+ ind <- length(t) * (i - 1) + 1:length(t)

+ plot(t, sens.func$Var.tot[ind, 1], type = 'l', lwd = 3,

+ ylim = c(0, max(sens.func$Var.tot[ind, 1])), ylab = 'variance',

+ col = 'lightgrey', main = paste('s =', s[i]))

+ matplot(t, t(sens.func$S.var[1, use,ind]), type = 'l',

+ main = paste('s =', s[i]), add = T, col = 2:5, lwd = 2)

+ }

R> legend('topright', c(sens.func$names.ind[use], 'total'),

+ col = c(2:5, 'lightgrey'), lty = c(1:4, 1), lwd = c(rep(2, 4), 3))

These plots demonstrate that, for most spatial locations, the time series of variance has two
peaks for the two different spills. Within the range we have selected, the first input, pollutant
mass, has fairly uniform influence across the time series. The second input, the diffusion rate
in the channel has a very large influence on the concentration of the pollutant during the
first spill, while the third input, the location of the second spill, has the largest effect on the
concentration during the second spill. These two inputs have a small interaction effect that
is most prominent at the beginning of the second spill. Notably, the fourth parameter, the
time of the second spill, has no effect, likely because the range used for that parameter was
very small.

5. Summary

Our proposed BASS framework provides a powerful general tool for nonparametric regression
settings. It can be used for modeling with many continuous and categorical inputs, large sam-
ple size and functional response. It provides posterior sensitivity analyses without integration
error. The MCMC approach to inference, especially using parallel tempering, yields posterior
samples that can be used for probabilistic prediction. The BASS package makes these features
accessible to users with minimal exposure. These capabilities have been demonstrated with
a set of examples involving different dimensions, categorical variables, functional responses,
and large datasets.
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