Package ‘AlphaSimR’

May 19, 2020
Type Package

Title Breeding Program Simulations
Version 0.12.2
Date 2020-05-19

Description The successor to the 'AlphaSim' software for breeding program
simulation [Faux et al. (2016) <doi:10.3835/plantgenome2016.02.0013>].
Used for stochastic simulations of breeding programs to the level of DNA
sequence for every individual. Contained is a wide range of functions for
modeling common tasks in a breeding program, such as selection and crossing.
These functions allow for constructing simulations of highly complex plant and
animal breeding programs via scripting in the R software environment. Such
simulations can be used to evaluate overall breeding program performance and
conduct research into breeding program design, such as implementation of
genomic selection. Included is the 'Markovian Coalescent Simulator' (MaCS")
for fast simulation of biallelic sequences according to a population
demographic history [Chen et al. (2009) <doi:10.1101/gr.083634.108>].

License MIT + file LICENSE

URL https://alphagenes.roslin.ed.ac.uk/wp/software-2/alphasimr/,
https://bitbucket.org/hickeyjohnteam/alphasimr

Encoding UTF-8

LazyData true

Depends R (>= 3.3.0), methods, R6

Imports Rcpp (>=0.12.7)

LinkingTo Rcpp, ReppArmadillo (>=0.7.500.0.0), BH

RoxygenNote 7.1.0

Suggests knitr, rmarkdown, testthat

VignetteBuilder knitr

NeedsCompilation yes

Author Chris Gaynor [aut, cre] (<https://orcid.org/0000-0003-0558-6656>),
Gregor Gorjanc [aut] (<https://orcid.org/0000-0001-8008-2787>),

1

https://alphagenes.roslin.ed.ac.uk/wp/software-2/alphasimr/
https://bitbucket.org/hickeyjohnteam/alphasimr

2 R topics documented:

David Wilson [aut],
John Hickey [aut] (<https://orcid.org/0000-0001-5675-3974>),
Daniel Money [ctb] (<https://orcid.org/0000-0001-5151-3648>)

Maintainer Chris Gaynor <gaynor.robert@hotmail.com>
Repository CRAN
Date/Publication 2020-05-19 09:30:02 UTC

R topics documented:

T 4
AlphaSimR 5
bV 5
calcGCA e 6
cChr e 6
dd . . 7
doubleGenome 8
ebV . e 8
editGenome e 9
editGenomeTopQtl 10
fastRRBLUP 11
genicVarA L L e e e 12
genicVarAA L. e 13
genicVarD L 14
genicVarG 14
genParam 15
getQtIMap e 16
getSnpMap L L 17
BV e e e 18
hybridCross 19
HybridPop-class 20
LociMap-class e 21
makeCross 21
makeCross2 e 22
makeDHo 23
MapPop-class e 24
meanG 24
meanP Lo e 25
mergeGenome e e e e e e e e 26
mergePops L L e e 27
MULALE L L e e e 27
newMapPop L 28
newPop . . . L 29
nlnd 30
pedigreeCross e 31
Phenoo 32
Pop-class 33

POPVAr . . . L e e 34

R topics documented: 3

pulllbdHaplo e e 35
pullQtlGeno 36
pullQtiHaplo 37
pullSegSiteGeno e 38
pullSegSiteHaplo e 39
pullSnpGeno 40
pullSnpHaplo 41
quickHaplo e e 42
randCross e e e e 42
randCross2 e e e e 44
RawPop-class e 45
reduceGenome e e e e e e e e 46
resetPop 47
RRBLUP e e e 48
RRBLUP2 e e e e 49
RRBLUPMemUse e e e e e 51
RRBLUP_D e e 52
RRBLUP_D2 e e e e e 53
RRBLUP_GCA e e e e e e 55
RRBLUP_GCA2 e e e e e 56
RRBLUP_SCA e e e 58
RRBLUP_SCA2 e e e e e e e 59
RRsol-class e e 61
TUNMACS o e e e e 61
runMacs2 e e e 62
sampleHaplo e 64
SelectCross e 65
selectFam L 66
selectInd e e e 68
selectOP e e e e 69
selectWithinFam 70
self . . e e e 72
sellndex e e e e 73
sellnt 74
SetEBV . . L e e 74
setPheno L e e e 75
setPhenoGCA e e e 77
SimParam e e 78
smithHazel e 99
TraitA-class e e e e 99
TraitA2-class e 100
TraitA2D-class e e e e 100
TraitAD-class e e e e e e e e e 100
TraitADE-class e e 100
TraitADEG-class e e e e 101
TraitADG-class e e e e e e e 101
TraitAE-class e 101

TraitAEG-class e 102

4 aa
TraitAG-class e 102
usefulness e 102
VArA . e s 103
VarAA . e e 104
varD . . e e e e 105
VarG . . . e e e 105
varP . e 106
writePlink 107
writeRecords L e 108

Index 109

aa Additive-by-additive epistatic deviations

Description

Returns additive-by-additive epistatic deviations for all traits

Usage

aa(pop, simParam = NULL)

Arguments
pop an object of Pop-class
simParam an object of SimParam
Examples

#Create founder haplotypes
founderPop = quickHaplo(nInd=1@, nChr=1, segSites=10)

#Set simulation parameters

SP =

SimParam$new(founderPop)

SP$addTraitAD(1@, meanDD=0.5)
SP$setVarE(h2=0.5)

#Create population
pop = newPop(founderPop, simParam=SP)
aa(pop, simParam=SP)

AlphaSimR 5

AlphaSimR AlphaSimR: Breeding Program Simulations

Description

The successor to the *AlphaSim’ software for breeding program simulation [Faux et al. (2016)
<doi:10.3835/plantgenome2016.02.0013>]. Used for stochastic simulations of breeding programs
to the level of DNA sequence for every individual. Contained is a wide range of functions for mod-
eling common tasks in a breeding program, such as selection and crossing. These functions allow
for constructing simulations of highly complex plant and animal breeding programs via scripting
in the R software environment. Such simulations can be used to evaluate overall breeding pro-
gram performance and conduct research into breeding program design, such as implementation
of genomic selection. Included is the "Markovian Coalescent Simulator’ ("MaCS”) for fast sim-
ulation of biallelic sequences according to a population demographic history [Chen et al. (2009)
<doi:10.1101/gr.083634.108>].

Please see the introductionary vignette for instructions for using this package. The vignette can be
viewed using the following command: vignette("intro”,package="AlphaSimR")

bv Breeding value

Description

Returns breeding values for all traits

Usage

bv(pop, simParam = NULL)

Arguments
pop an object of Pop-class
simParam an object of SimParam
Examples

#Create founder haplotypes
founderPop = quickHaplo(nInd=1@, nChr=1, segSites=10)

#Set simulation parameters
SP = SimParam$new(founderPop)
SP$addTraitAD(1@, meanDD=0.5)
SP$setVarE(h2=0.5)

#Create population
pop = newPop(founderPop, simParam=SP)
bv(pop, simParam=SP)

6 cChr

calcGCA Calculate GCA

Description
Calculate general combining ability of test crosses. Intended for output from hybridCross using the
"testcross" option, but will work for any population.

Usage

calcGCA(pop, use = "pheno")

Arguments
pop an object of Pop-class or HybridPop-class
use tabulate either genetic values "gv", estimated breeding values "ebv", or pheno-
types "pheno"
Examples

#Create founder haplotypes
founderPop = quickHaplo(nInd=10, nChr=1, segSites=10, inbred=TRUE)

#Set simulation parameters
SP = SimParam$new(founderPop)
SP$addTraitA(10)

#Create population
pop = newPop(founderPop, simParam=SP)

#Make crosses for full diallele
pop2 = hybridCross(pop, pop, simParam=SP)
GCA = calcGCA(pop2, use="gv")

cChr Combine MapPop chromosomes

Description
Merges the chromosomes of multiple MapPop-class objects. Each MapPop must have the same
number of chromosomes

Usage
cChr(...)

dd

Arguments

MapPop-class objects to be combined

Value

Returns an object of MapPop-class

Examples

pop1 = quickHaplo(nInd=1@, nChr=1, segSites=10)
pop2 = quickHaplo(nInd=10, nChr=1, segSites=10)

combinedPop = cChr(popl, pop2)

dd Dominance deviations

Description

Returns dominance deviations for all traits

Usage

dd(pop, simParam = NULL)

Arguments
pop an object of Pop-class
simParam an object of SimParam
Examples

#Create founder haplotypes
founderPop = quickHaplo(nInd=1@, nChr=1, segSites=10)

#Set simulation parameters
SP = SimParam$new(founderPop)
SP$addTraitAD(10, meanDD=0.5)
SP$setVarE(h2=0.5)

#Create population
pop = newPop(founderPop, simParam=SP)
dd(pop, simParam=SP)

8 ebv

doubleGenome Double the ploidy of individuals

Description
Creates new individuals with twice the ploidy. This function was created to model the formation of
tetraploid potatoes from diploid potatoes. This function will work on any population.

Usage

doubleGenome(pop, keepParents = TRUE, simParam = NULL)

Arguments
pop an object of "Pop’ superclass
keepParents should previous parents be used for mother and father.
simParam an object of ’SimParam’ class

Value

Returns an object of Pop-class

Examples

#Create founder haplotypes
founderPop = quickHaplo(nInd=2, nChr=1, segSites=10)

#Set simulation parameters
SP = SimParam$new(founderPop)

#Create population
pop = newPop(founderPop, simParam=SP)

#Create individuals with doubled ploidy
pop2 = doubleGenome(pop, simParam=SP)

ebv Estimated breeding value

Description

A wrapper for accessing the ebv slot

Usage

ebv (pop)

editGenome 9

Arguments

pop a Pop-class or similar object

Examples

#Create founder haplotypes
founderPop = quickHaplo(nInd=1@, nChr=1, segSites=10)

#Set simulation parameters
SP = SimParam$new(founderPop)
SP$addTraitAD(1@, meanDD=0.5)
SP$setVarE(h2=0.5)

#Create population

pop = newPop(founderPop, simParam=SP)

pop@ebv = matrix(rnorm(pop@nInd), nrow=pop@nInd, ncol=1)
ebv (pop)

editGenome Edit genome

Description
Edits selected loci of selected individuals to a homozygous state for either the 1 or O allele. The gv
slot is recalculated to reflect the any changes due to editing, but other slots remain the same.
Usage

editGenome(pop, ind, chr, segSites, allele, simParam = NULL)

Arguments
pop an object of Pop-class
ind a vector of individuals to edit
chr a vector of chromosomes to edit. Length must match length of segSites.
segSites a vector of segregating sites to edit. Length must match length of chr.
allele either O or 1 for desired allele
simParam an object of SimParam

Value

Returns an object of Pop-class

10 editGenomeTopQtl

Examples

#Create founder haplotypes
founderPop = quickHaplo(nInd=2, nChr=1, segSites=10)

#Set simulation parameters
SP = SimParam$new(founderPop)
SP$addTraitA(10)

#Create population
pop = newPop(founderPop, simParam=SP)

#Change individual 1 to homozygous for the 1 allele

#at locus 1, chromosome 1

pop2 = editGenome(pop, ind=1, chr=1, segSites=1,
allele=1, simParam=SP)

editGenomeTopQtl Edit genome - the top QTL

Description

Edits the top QTL (with the largest additive effect) to a homozygous state for the allele increasing.
Only nonfixed QTL are edited The gv slot is recalculated to reflect the any changes due to editing,
but other slots remain the same.

Usage

editGenomeTopQtl(pop, ind, nQtl, trait = 1, increase = TRUE, simParam = NULL)

Arguments
pop an object of Pop-class
ind a vector of individuals to edit
nQtl number of QTL to edit
trait which trait effects should guide selection of the top QTL
increase should the trait value be increased or decreased
simParam an object of SimParam

Value

Returns an object of Pop-class

fastRRBLUP 11

Examples

#Create founder haplotypes
founderPop = quickHaplo(nInd=2, nChr=1, segSites=10)

#Set simulation parameters
SP = SimParam$new(founderPop)
SP$addTraitA(10)

#Create population
pop = newPop(founderPop, simParam=SP)

#Change up to 10 loci for individual 1
pop2 = editGenomeTopQtl(pop, ind=1, nQtl=10, simParam=SP)

fastRRBLUP Fast RR-BLUP

Description

Solves an RR-BLUP model for genomic predictions given known variance components. This im-
plementation is meant as a fast and low memory alternative to RRBLUP or RRBLUP2. Unlike the
those functions, the fastRRBLUP does not fit fixed effects (other than the intercept) or account for
unequal replication.

Usage

fastRRBLUP(
pop,
traits = 1,
use = "pheno"”,
snpChip = 1,
useQtl = FALSE,
maxIter = 1000,
Vu = NULL,
Ve = NULL,
simParam = NULL,

)
Arguments
pop a Pop-class to serve as the training population
traits an integer indicating the trait to model or a function of the traits returning a
single value. Only univariate models are supported.
use train model using phenotypes "pheno", genetic values "gv", estimated breeding

values "ebv", breeding values "bv", or randomly "rand"

12 genicVarA

snpChip an integer indicating which SNP chip genotype to use

useQtl should QTL genotypes be used instead of a SNP chip. If TRUE, snpChip spec-
ifies which trait’s QTL to use, and thus these QTL may not match the QTL
underlying the phenotype supplied in traits.

maxIter maximum number of iterations.

Vu marker effect variance. If value is NULL, a reasonable value is chosen automat-
ically.

Ve error variance. If value is NULL, a reasonable value is chosen automatically.

simParam an object of SimParam

additional arguments if using a function for traits

Examples

#Create founder haplotypes
founderPop = quickHaplo(nInd=1@, nChr=1, segSites=20)

#Set simulation parameters
SP = SimParam$new(founderPop)
SP$addTraitA(10)
SP$setVarkE(h2=0.5)
SP$addSnpChip(10)

#Create population
pop = newPop(founderPop, simParam=SP)

#Run GS model and set EBV
ans = fastRRBLUP(pop, simParam=SP)
pop = setEBV(pop, ans, simParam=SP)

#Evaluate accuracy
cor(gv(pop), ebv(pop))

genicVarA Additive genic variance

Description

Returns additive genic variance for all traits

Usage

genicVarA(pop, simParam = NULL)

Arguments

pop an object of Pop-class

simParam an object of SimParam

genicVarAA 13

Examples

#Create founder haplotypes
founderPop = quickHaplo(nInd=1@, nChr=1, segSites=10)

#Set simulation parameters
SP = SimParam$new(founderPop)
SP$addTraitAD(10, meanDD=0.5)
SP$setVarE(h2=0.5)

#Create population
pop = newPop(founderPop, simParam=SP)
genicVarA(pop, simParam=SP)

genicVarAA Additive-by-additive genic variance

Description

Returns additive-by-additive epistatic genic variance for all traits

Usage

genicVarAA(pop, simParam = NULL)

Arguments
pop an object of Pop-class
simParam an object of SimParam
Examples

#Create founder haplotypes
founderPop = quickHaplo(nInd=10, nChr=1, segSites=10)

#Set simulation parameters
SP = SimParam$new(founderPop)
SP$addTraitAD(1@, meanDD=0.5)
SP$setVarE(h2=0.5)

#Create population
pop = newPop(founderPop, simParam=SP)
genicVarAA(pop, simParam=SP)

14 genicVarG

genicVarD Dominance genic variance

Description

Returns dominance genic variance for all traits

Usage
genicVarD(pop, simParam = NULL)

Arguments
pop an object of Pop-class
simParam an object of SimParam
Examples

#Create founder haplotypes
founderPop = quickHaplo(nInd=1@, nChr=1, segSites=10)

#Set simulation parameters
SP = SimParam$new(founderPop)
SP$addTraitAD(1@, meanDD=0.5)
SP$setVarE(h2=0.5)

#Create population
pop = newPop(founderPop, simParam=SP)
genicVarD(pop, simParam=SP)

genicVarG Total genic variance

Description

Returns total genic variance for all traits

Usage
genicVarG(pop, simParam = NULL)

Arguments

pop an object of Pop-class

simParam an object of SimParam

genParam 15

Examples

#Create founder haplotypes
founderPop = quickHaplo(nInd=10, nChr=1, segSites=10)

#Set simulation parameters
SP = SimParam$new(founderPop)
SP$addTraitAD(1@, meanDD=0.5)
SP$setVarE(h2=0.5)

#Create population
pop = newPop(founderPop, simParam=SP)
genicVarG(pop, simParam=SP)

genParam Sumarize genetic parameters

Description

Calculates genetic and genic additive and dominance variances for an object of Pop-class

Usage

genParam(pop, simParam = NULL)

Arguments
pop an object of Pop-class
simParam an object of SimParam
Value

varA an nTrait by nTrait matrix of additive genetic variances

varD an nTrait by nTrait matrix of dominance genetic variances

varAA an nTrait by nTrait matrix of additive-by-additive genetic variances

varG an nTrait by nTrait matrix of total genetic variances

genicVarA an nTrait vector of additive genic variances

genicVarD an nTrait vector of dominance genic variances

genicVarAA an nTrait vector of additive-by-additive genic variances

genicVarG an nTrait vector of total genic variances

covA_HW an nTrait vector of additive covariances due to non-random mating
covD_HW an nTrait vector of dominance covariances due to non-random mating
covAA_HW an nTrait vector of additive-by-additive covariances due to non-random mating

covG_HW an nTrait vector of total genic covariances due to non-random mating

16 getQtIMap

covA_L an nTrait vector of additive covariances due to linkage disequilibrium

covD_L an nTrait vector of dominance covariances due to linkage disequilibrium

covAA_L an nTrait vector of additive-by-additive covariances due to linkage disequilibrium

covAD_L an nTrait vector of additive by dominance covariances due to linkage disequilibrium

covAAA_L an nTrait vector of additive by additive-by-additive covariances due to linkage dise-
quilibrium

covDAA_L an nTrait vector of dominance by additive-by-additive covariances due to linkage dis-
equilibrium

covG_L an nTrait vector of total genic covariances due to linkage disequilibrium

mu an nTrait vector of trait means

mu_HW an nTrait vector of expected trait means under random mating

gv a matrix of genetic values with dimensions nInd by nTraits

bv a matrix of breeding values with dimensions nInd by nTraits

dd a matrix of dominance deviations with dimensions nInd by nTraits

aa a matrix of additive-by-additive epistatic deviations with dimensions nInd by nTraits

gv_mu an nTrait vector of intercepts with dimensions nInd by nTraits

gv_a a matrix of additive genetic values with dimensions nInd by nTraits

gv_d a matrix of dominance genetic values with dimensions nInd by nTraits

gv_aa a matrix of additive-by-additive genetic values with dimensions nlnd by nTraits

Examples

#Create founder haplotypes
founderPop = quickHaplo(nInd=10, nChr=1, segSites=10)

#Set simulation parameters
SP = SimParam$new(founderPop)
SP$addTraitAD(1@, meanDD=0.5)
SP$setVarE(h2=0.5)

#Create population
pop = newPop(founderPop, simParam=SP)
ans = genParam(pop, simParam=SP)

getQtlMap Get QTL genetic map

Description

Retrieves the genetic map for the QTL of a given trait.

getSnpMap 17

Usage

getQtlMap(trait = 1, gender = "A", simParam = NULL)

Arguments
trait an integer for the
gender determines which gender specific map is returned. Options are "A" for average
map, "F" for female map, and "M" for male map. All options are equivalent if
not using gender specific maps.
simParam an object of SimParam
Value

Returns a data.frame for the SNP map.

Examples

#Create founder haplotypes
founderPop = quickHaplo(nInd=10, nChr=1, segSites=10)

#Set simulation parameters
SP = SimParam$new(founderPop)
SP$addTraitA(5)

#Pull SNP map
getQtlMap(trait=1, simParam=SP)

getSnpMap Get SNP genetic map

Description

Retrieves the genetic map for a given SNP chip.

Usage

getSnpMap(snpChip = 1, gender = "A", simParam = NULL)

Arguments
snpChip an integer. Indicates which SNP chip’s map to retrieve.
gender determines which gender specific map is returned. Options are "A" for average

map, "F" for female map, and "M" for male map. All options are equivalent if
not using gender specific maps.

simParam an object of SimParam

18

Value

Returns a data.frame for the SNP map.

Examples

#Create founder haplotypes
founderPop = quickHaplo(nInd=1@, nChr=1, segSites=10)

#Set simulation parameters
SP = SimParam$new(founderPop)
SP$addSnpChip(5)

#Pull SNP map
getSnpMap(snpChip=1, simParam=SP)

gv

gv Genetic value

Description

A wrapper for accessing the gv slot

Usage

gv(pop)

Arguments

pop a Pop-class or similar object

Examples

#Create founder haplotypes
founderPop = quickHaplo(nInd=1@, nChr=1, segSites=10)

#Set simulation parameters
SP = SimParam$new(founderPop)
SP$addTraitAD(10, meanDD=0.5)
SP$setVarE(h2=0.5)

#Create population
pop = newPop(founderPop, simParam=SP)
gv(pop)

hybridCross

19

hybridCross Hybrid crossing

Description

A convience function for hybrid plant breeding simulations. Allows for easy specification of a test
cross scheme and/or creation of an object of HybridPop-class. Note that the HybridPop-class
should only be used if the parents were created using the makeDH function or newPop using inbred

founders. The id for new individuals is [mother_id]_[father_id]

Usage

hybridCross(
females,
males,
crossPlan = "testcross”,
returnHybridPop = FALSE,
simParam = NULL

)
Arguments
females female population, an object of Pop-class
males male population, an object of Pop-class
crossPlan either "testcross" for all possible combinantions or a matrix with two columns
for designed crosses
returnHybridPop
should results be returned as HybridPop-class. If false returns results as Pop-class.
Population must be fully inbred if TRUE.
simParam an object of SimParam
Examples

#Create founder haplotypes
founderPop = quickHaplo(nInd=2, nChr=1, segSites=10)

#Set simulation parameters
SP = SimParam$new(founderPop)

#Create population
pop = newPop(founderPop, simParam=SP)

#Make crosses for full diallele
pop2 = hybridCross(pop, pop, simParam=SP)

20 HybridPop-class

HybridPop-class Hybrid population

Description

A lightweight version of Pop-class for hybrid lines. Memory is saved by not storing genotypic
data.

Usage

S4 method for signature 'HybridPop'
x[i]

S4 method for signature 'HybridPop'
c(x, ...)

Arguments
X a ’HybridPop’
i index of individuals

additional *HybridPop’ objects

Methods (by generic)

* [: Extract HybridPop using index or id
* c: Combine multiple HybridPops

Slots

nInd number of individuals

id an individual’s identifier

mother the identifier of the individual’s mother
father the identifier of the individual’s father
nTraits number of traits

gv matrix of genetic values. When using GxE traits, gv reflects gv when w=0. Dimensions are
nlnd by nTraits.

pheno matrix of phenotypic values. Dimensions are nInd by nTraits.

gxe list containing GXE slopes for GXE traits

LociMap-class 21

LociMap-class Loci metadata

Description

used for both SNPs and QTLs

Slots

nLoci total number of loci
lociPerChr number of loci per chromosome

locilLoc physical position of loci

makeCross Make designed crosses

Description

Makes crosses within a population using a user supplied crossing plan.

Usage

makeCross(pop, crossPlan, nProgeny = 1, simParam = NULL)

Arguments
pop an object of Pop-class
crossPlan a matrix with two column representing female and male parents. Either integers
for the position in population or character strings for the IDs.
nProgeny number of progeny per cross
simParam an object of SimParam
Value

Returns an object of Pop-class

22 makeCross2

Examples

#Create founder haplotypes
founderPop = quickHaplo(nInd=1@, nChr=1, segSites=10)

#Set simulation parameters
SP = SimParam$new(founderPop)

#Create population
pop = newPop(founderPop, simParam=SP)

#Cross individual 1 with individual 10
crossPlan = matrix(c(1,10), nrow=1, ncol=2)
pop2 = makeCross(pop, crossPlan, simParam=SP)

makeCross2 Make designed crosses

Description

Makes crosses between two populations using a user supplied crossing plan.

Usage

makeCross2(females, males, crossPlan, nProgeny = 1, simParam = NULL)

Arguments
females an object of Pop-class for female parents.
males an object of Pop-class for male parents.
crossPlan a matrix with two column representing female and male parents. Either integers
for the position in population or character strings for the IDs.
nProgeny number of progeny per cross
simParam an object of SimParam
Value

Returns an object of Pop-class

Examples

#Create founder haplotypes
founderPop = quickHaplo(nInd=1@, nChr=1, segSites=10)

#Set simulation parameters
SP = SimParam$new(founderPop)

makeDH 23

#Create population
pop = newPop(founderPop, simParam=SP)

#Cross individual 1 with individual 10
crossPlan = matrix(c(1,10), nrow=1, ncol=2)
pop2 = makeCross2(pop, pop, crossPlan, simParam=SP)

makeDH Generates DH lines

Description
Creates DH lines from each individual in a population. Only works with diploid individuals. For
polyploids, use reduceGenome and doubleGenome.

Usage

makeDH(pop, nDH = 1, useFemale = TRUE, keepParents = TRUE, simParam = NULL)

Arguments
pop an object of "Pop’ superclass
nDH total number of DH lines per individual
useFemale should female recombination rates be used.
keepParents should previous parents be used for mother and father.
simParam an object of *SimParam’ class

Value

Returns an object of Pop-class

Examples

#Create founder haplotypes
founderPop = quickHaplo(nInd=2, nChr=1, segSites=10)

#Set simulation parameters
SP = SimParam$new(founderPop)

#Create population
pop = newPop(founderPop, simParam=SP)

#Create 1 DH for each individual
pop2 = makeDH(pop, simParam=SP)

24 meanG

MapPop-class Raw population with genetic map

Description

Extends RawPop-class to add a genetic map. This is the first object created in a simulation. It is
used for creating initial populations and setting traits in the SimParam.

Usage
S4 method for signature 'MapPop'’
x[i]
S4 method for signature 'MapPop'
c(x, ...)

Arguments
X a ’"MapPop’ object
i index of chromosomes

aditional "MapPop’ objects

Methods (by generic)

* [: Extract MapPop by index
 c: Combine multiple MapPops

Slots

genMap "matrix" of chromsome genetic maps

centromere vector of centromere positions

meanG Mean genetic values

Description

Returns the mean genetic values for all traits

Usage
meanG(pop)

meanP

Arguments

pop an object of Pop-class or HybridPop-class

Examples

#Create founder haplotypes
founderPop = quickHaplo(nInd=1@, nChr=1, segSites=10)

#Set simulation parameters
SP = SimParam$new(founderPop)
SP$addTraitA(10)
SP$setVarE(h2=0.5)

#Create population
pop = newPop(founderPop, simParam=SP)
meanG(pop)

25

meanP Mean phenotypic values

Description

Returns the mean phenotypic values for all traits

Usage

meanP (pop)

Arguments

pop an object of Pop-class or HybridPop-class

Examples

#Create founder haplotypes
founderPop = quickHaplo(nInd=1@, nChr=1, segSites=10)

#Set simulation parameters
SP = SimParam$new(founderPop)
SP$addTraitA(10)
SP$setVarE(h2=0.5)

#Create population
pop = newPop(founderPop, simParam=SP)
meanP (pop)

26 mergeGenome

mergeGenome Combine genomes of individuals

Description

This function is designed to model the pairing of gametes. The male and female individuals are
treated as gametes, so the ploidy of newly created individuals will be the sum of it parents.

Usage

mergeGenome (females, males, crossPlan, simParam = NULL)

Arguments
females an object of Pop-class for female parents.
males an object of Pop-class for male parents.
crossPlan a matrix with two column representing female and male parents. Either integers
for the position in population or character strings for the IDs.
simParam an object of SimParam
Value

Returns an object of Pop-class

Examples

#Create founder haplotypes
founderPop = quickHaplo(nInd=1@, nChr=1, segSites=10)

#Set simulation parameters
SP = SimParam$new(founderPop)

#Create population
pop = newPop(founderPop, simParam=SP)

#Cross individual 1 with individual 10
crossPlan = matrix(c(1,10), nrow=1, ncol=2)
pop2 = mergeGenome(pop, pop, crossPlan, simParam=SP)

mergePops 27

mergePops Merge list of populations

Description

Rapidly merges a list of populations into a single population

Usage

mergePops (popList)
Arguments

popList a list containing Pop-class elements
Value

Returns a Pop-class

Examples

#Create founder haplotypes
founderPop = quickHaplo(nInd=1@, nChr=1, segSites=10)

#Set simulation parameters
SP = SimParam$new(founderPop)

#Create a list of populations and merge list
pop = newPop(founderPop, simParam=SP)
popList = list(pop, pop)

pop2 = mergePops(popList)

mutate Add Random Mutations

Description

Adds random mutations to individuals in a population. Note that any existing phenotypes or EBVs
are kept. Thus, the user will need to run setPheno and/or setEBV to generate new phenotypes or
EBVs that reflect changes introduced by the new mutations.

Usage

mutate(pop, mutRate = 2.5e-08, returnPos = FALSE, simParam = NULL)

28 newMapPop

Arguments
pop an object of Pop-class
mutRate rate of new mutations
returnPos should the positions of mutations be returned
simParam an object of SimParam
Value

an object of Pop-class if returnPos=FALSE or a list containing a Pop-class and a data.frame
containing the postions of mutations if returnPos=TRUE

Examples

#Create founder haplotypes
founderPop = quickHaplo(nInd=2, nChr=1, segSites=10)

#Set simulation parameters
SP = SimParam$new(founderPop)
SP$addTraitA(10)

#Create population
pop = newPop(founderPop, simParam=SP)

#Introduce mutations
pop = mutate(pop, simParam=SP)

newMapPop New MapPop

Description

Creates a new MapPop-class from user supplied genetic maps and haplotypes.

Usage

newMapPop(genMap, haplotypes, inbred = FALSE, ploidy = 2L)

Arguments
genMap a list of genetic maps
haplotypes a list of matrices or data.frames that can be coerced to matrices. See details.
inbred are individuals fully inbred

ploidy ploidy level of organism

newPop 29

Details

Each item of genMap must be a vector of ordered genetic lengths in Morgans. The first value must
be zero. The length of the vector determines the number of segregating sites on the chromosome.

Each item of haplotypes must be coercible to a matrix. The columns of this matrix correspond to
segregating sites and their number must match

Value

an object of MapPop-class

Examples

Create genetic map for two chromosomes, each 1 Morgan long
Each chromosome contains 11 equally spaced segregating sites
genMap = list(seq(@,1,length.out=11),

seq(0,1,length.out=11))

Create haplotypes for 10 outbred individuals
chr1l = sample(x=0:1,size=20*11,replace=TRUE)
chr1l = matrix(chril,nrow=20,ncol=11)

chr2 = sample(x=0:1,size=20*11,replace=TRUE)
chr2 = matrix(chr2,nrow=20,ncol=11)

haplotypes = list(chri1,chr2)

founderPop = newMapPop (genMap=genMap, haplotypes=haplotypes)

newPop Create new Population

Description

Creates a new Pop-class from an object of MapPop-class or RawPop-class. The function is
intended for creating initial populations from "FOUNDERPOP’ created by runMacs.

Usage
newPop (

rawPop,

mother = NULL,
father = NULL,
origM = NULL,

origF = NULL,

isDH = FALSE,

simParam = NULL

30

Arguments
rawPop
mother
father
origM
origF

isDH

simParam

Value

nInd

an object of MapPop-class or RawPop-class

optional id for mothers. Must match id in pedigree if using track pedigree.
optional id for fathers. Must match id in pedigree if using track pedigree.
optional alternative id for mothers

optional alternative id for fathers

optional value indicating if the individuals are doubled haploids and/or inbred
founders

an object of SimParam

Returns an object of Pop-class

Examples

#Create founder haplotypes
founderPop = quickHaplo(nInd=2, nChr=1, segSites=10)

#Set simulation parameters
SP = SimParam$new(founderPop)

SP$addTraitA(10)

#Create population
pop = newPop(founderPop, simParam=SP)

nInd

Number of individuals

Description

A wrapper for accessing the nInd slot

Usage

nInd(pop)

Arguments

pop

a Pop-class or similar object

pedigreeCross

Examples

#Create founder haplotypes

founderPop = quickHaplo(nInd=1@, nChr=1, segSites=10)

#Set simulation parameters
SP = SimParam$new(founderPop)
SP$addTraitAD(1@, meanDD=0.5)

SP$setVarE(h2=0.5)

#Create population

pop = newPop(founderPop, simParam=SP)

nInd(pop)

31

pedigreeCross

Pedigree cross

Description

Creates a Pop-class from a generic pedigree and a set of founder individuals.

The way in which the user supplied pedigree is used depends on the value of matchID. If matchID
is TRUE, the IDs in the user supplied pedigree are matched against founderNames. If matchID is
FALSE, founder individuals in the user supplied pedigree are randomly sampled from founderPop.

Usage

pedigreeCross(
founderPop,
id,
mother,
father,

matchID = FALSE,
NULL,

founderNames =

maxCycle = 100,

DH = NULL,

useFemale = TRUE,
simParam = NULL

)
Arguments
founderPop a Pop-class
id a vector of unique identifiers for individuals in the pedigree. The values of these
IDs are seperate from the IDs in the founderPop if matchID=FALSE.
mother a vector of identifiers for the mothers of individuals in the pedigree. Must match

one of the elements in the id vector or they will be treated as unknown.

32 pheno

father a vector of identifiers for the fathers of individuals in the pedigree. Must match
one of the elements in the id vector or they will be treated as unknown.

matchID indicates if the IDs in founderPop should be matched to the id argument. See
details.

founderNames names for individuals in the founder population. Must be provided when matchID=TRUE.

maxCycle the maximum number of loops to make over the pedigree to sort it.
DH an optional vector indicating if an individual should be made a doubled haploid.
useFemale If creating DH lines, should female recombination rates be used. This parameter
has no effect if, recombRatio=1.
simParam an object of ’SimParam’ class
Examples

#Create founder haplotypes
founderPop = quickHaplo(nInd=2, nChr=1, segSites=10)

#Set simulation parameters
SP = SimParam$new(founderPop)

#Create population
pop = newPop(founderPop, simParam=SP)

#Pedigree for a biparental cross with 7 generations of selfing
id = 1:10

mother = ¢(0,0,1,3:9)

father = c(0,0,2,3:9)

pop2 = pedigreeCross(pop, id, mother, father, simParam=SP)

pheno Phenotype

Description

A wrapper for accessing the pheno slot

Usage

pheno(pop)

Arguments

pop a Pop-class or similar object

Pop-class

Examples

#Create founder haplotypes
founderPop = quickHaplo(nInd=1@, nChr=1, segSites=10)

#Set simulation parameters
SP = SimParam$new(founderPop)
SP$addTraitAD(1@, meanDD=0.5)
SP$setVarE(h2=0.5)

#Create population
pop = newPop(founderPop, simParam=SP)
pheno(pop)

33

Pop-class Population

Description

Extends RawPop-class to add gender, genetic values, phenotypes, and pedigrees.

Usage
S4 method for signature 'Pop'
x[i]
S4 method for signature 'Pop'
c(x, ...)
S4 method for signature 'Pop'
show(object)

Arguments
X a ’Pop’ object
i index of individuals

additional "Pop’ objects

object a "Pop’ object

Methods (by generic)

* [: Extract Pop by index or id
* c: Combine multiple Pops

* show: Show population summary

34 pop Var

Slots

id an individual’s identifier

mother the identifier of the individual’s mother
father the identifier of the individual’s father
gender gender of individuals

nTraits number of traits

gv matrix of genetic values. When using GxE traits, gv reflects gv when w=0. Dimensions are
nlnd by nTraits.

pheno matrix of phenotypic values. Dimensions are nInd by nTraits.

ebv matrix of estimated breeding values. Dimensions are nInd rows and a variable number of
columns.

gxe list containing GXE slopes for GxXE traits

fixEff a fixed effect relating to the phenotype. Used by genomic selection models but otherwise
ignored.

reps the number of replications used to measure the phenotype. Used by genomic selection mod-
els, but otherwise ignored.

popVar Population variance

Description

Calculates the population variance matrix as opposed to the sample variance matrix calculated by
var. i.e. divides by n instead of n-1

Usage

popVar (X)

Arguments

X an n by m matrix

Value

an m by m variance-covariance matrix

pulllbdHaplo

35

pullIbdHaplo

Pull Identity By Descent (IBD) haplotypes

Description

Retrieves Identity By Descent (IBD) haplotype data

Usage
pullIbdHaplo(
pop = NULL,
chr = NULL,

snpChip = NULL,
pedigree = NULL,
simParam = NULL

Arguments

pop

chr

snpChip

pedigree

simParam

Value

an object of Pop-class or RawPop-class. If NULL, haplotypes for the whole
ancestral pedigree are retreived. Otherwise, haplotypes just for the pop individ-
uals are retreived. In both cases the base population is controlled by pedigree.

a vector of chromosomes to retrieve. If NULL, all chromosomes are retrieved.

an integer. Indicates which SNP array loci are retrieved. If NULL, all sites are
retrieved.

a matrix with ancestral pedigree to set a base population. It should be of the

same form as simParam$pedigree (see setTrackPed in SimParam), i.e., tWo
columns (mother and father) and the same number of rows as simParam$pedigree.Base
population can be set by setting parents as 0. If NULL, pedigree from SimParam

is taken.

an object of SimParam

Returns a matrix of haplotypes with Identity By Descent (IBD) coding of locus alleles. The matrix
colnames reflect whether all segregagting loci (sites) are retreived or only SNP array loci.

Examples

#Create founder haplotypes
founderPop = quickHaplo(nInd=10, nChr=1, segSites=15)

#Set simulation parameters
SP = SimParam$new(founderPop)

SP$addTraitA(10)
SP$addSnpChip(5)

SP$setTrackRec(TRUE)

36 pullQtlGeno

#Create population
pop = newPop(founderPop, simParam=SP)
pullIbdHaplo(pop, simParam=SP)

pullQtlGeno Pull QTL genotype

Description

Retrieves QTL genotype data

Usage

pullQtlGeno(pop, trait = 1, chr = NULL, simParam = NULL)

Arguments
pop an object of Pop-class
trait an integer. Indicates which trait’s QTL genotypes to retrieve.
chr a vector of chromosomes to retrieve. If NULL, all chromosome are retrieved.
simParam an object of SimParam
Details

@title Pull SNP genotype for multiple snp chips # # @description Retrieves SNP genotype
data for multiple snp chips # # @param pop an object of Pop-class # @param chips a vec-
tor. For each animal indicates what snp #° chip to use # @param missing What value to use for
missing # @param simParam an object of SimParam#” # @return Returns a matrix of SNP geno-
types. # # @export pullMultipleSnpGeno = function(pop, chips, missing=9, simParam=NULL)
if(is.null(simParam)) simParam = get("SP" envir=.GlobalEnv)

I feel like the next line shouldn’t be needed but I don’t know # enough R! (dmoney) missing
= as.integer(missing) allSnps = numeric(0) uniqueChips = unique(chips) for (¢ in uniqueChips)
allSnps = sort(union(allSnps,simParam$snpChips[[c]] @lociLoc))

output = matrix(pop @nlnd,length(allSnps),data=missing) if(class(pop)=="Pop") rownames(output)
= pop@id else rownames(output) = as.character(1:pop@nlInd)

for (snpChip in uniqueChips) mask = allSnps one = getGeno(pop @ geno, simParam$snpChips[[snpChip]] @lociPerChr,
simParam$snpChips[[snpChip]] @lociLoc, simParam$nThreads) one = convToImat(one) for (i in
1:pop@nlInd) if (chips[i] == snpChip) output[i,mask] = one[i,] output[i,mask] = one[i,]

colnames(output) = paste("SNP",1:ncol(output),sep="_")

return(output)

Value

Returns a matrix of QTL genotypes.

pullQtlIHaplo 37

Examples

#Create founder haplotypes
founderPop = quickHaplo(nInd=10, nChr=1, segSites=15)

#Set simulation parameters
SP = SimParam$new(founderPop)
SP$addTraitA(10)
SP$addSnpChip(5)

#Create population
pop = newPop(founderPop, simParam=SP)
pullQtlGeno(pop, simParam=SP)

pullQtlHaplo Pull QTL haplotypes

Description

Retrieves QTL haplotype data

Usage

pullQtlHaplo(pop, trait = 1, haplo = "all"”, chr = NULL, simParam = NULL)

Arguments
pop an object of Pop-class
trait an integer. Indicates which trait’s QTL haplotypes to retrieve.
haplo either "all" for all haplotypes or an integer for a single set of haplotypes. Use a
value of 1 for female haplotyes and a value of 2 for male haplotypes.
chr a vector of chromosomes to retrieve. If NULL, all chromosome are retrieved.
simParam an object of SimParam
Details

@title Pull SNP haplotypes for multiple chips # # @description Retrieves SNP haplotype data
for multiple snp # # @param pop an object of Pop-class # @param chips a vector. For each
animal indicates what snp #° chip to use # @param haplo either "all" for all haplotypes or an integer
for a single set of haplotypes. Use a value of 1 for female #” haplotyes and a value of 2 for male
haplotypes. # @param missing What value to use for missing # @param simParam an object of
SimParam# # @return Returns a matrix of SNP haplotypes. # # @export pullMultipleSnpHaplo
= function(pop, chips, haplo="all", missing=9, simParam=NULL) if(is.null(simParam)) simParam
= get("SP",envir=.GlobalEnv)

I feel like the next line shouldn’t be needed but I don’t know # enough R! (dmoney) missing
= as.integer(missing) allSnps = numeric(0) uniqueChips = unique(chips) for (c in uniqueChips)
allSnps = sort(union(allSnps,simParam$snpChips[[c]] @lociLoc))

38 pullSegSiteGeno

if (haplo == "all") output = matrix(pop @nInd*2,length(allSnps),data=missing) if(class(pop)=="Pop")
rownames(output) = paste(rep(pop @id,each=pop @ploidy), rep(1:pop @ploidy,pop @nInd),sep="_")
else rownames(output) = paste(rep(1:pop @nlnd,each=pop @ploidy), rep(1:pop @ploidy,pop@nInd),sep="_")

else output = matrix(pop @nlnd,length(allSnps),data=missing) if(class(pop)=="Pop") rownames(output)
= paste(pop @id,rep(haplo,pop @nInd),sep="_") else rownames(output) = paste(1:pop @nInd,rep(haplo,pop @nlnd),sep="_")

for (snpChip in uniqueChips) mask = allSnps if (haplo == "all") one = getHaplo(pop@geno, sim-
Param$snpChips[[snpChip]] @lociPerChr, simParam$snpChips[[snpChip]]@lociLoc, simParam$nThreads)
one = convTolmat(one) for (i in 1:pop@nlnd) if (chips[i] == snpChip) output[i*2-1,mask] = one[i*2-

1,] output[i*2,mask] = one[i*2,]

else one = getOneHaplo(pop @ geno, simParam$snpChips[[snpChip]] @lociPerChr, simParam$snpChips[[snpChip]]@locilo
as.integer(haplo), simParam$nThreads) one = convTolmat(one) for (i in 1:pop@nlInd) if (chips[i]
== snpChip) output[i,mask] = one[i,] output[i,mask] = onel[i,]

colnames(output) = paste("SNP",1:ncol(output),sep="_")

return(output)

Value

Returns a matrix of QTL haplotypes.

Examples

#Create founder haplotypes
founderPop = quickHaplo(nInd=1@, nChr=1, segSites=15)

#Set simulation parameters
SP = SimParam$new(founderPop)
SP$addTraitA(10)
SP$addSnpChip(5)

#Create population
pop = newPop(founderPop, simParam=SP)
pullQtlHaplo(pop, simParam=SP)

pullSegSiteGeno Pull seg site genotypes

Description

Retrieves genotype data for all segregating sites

Usage

pullSegSiteGeno(pop, chr = NULL, simParam = NULL)

pullSegSiteHaplo 39

Arguments
pop an object of Pop-class or RawPop-class
chr a vector of chromosomes to retrieve. If NULL, all chromosome are retrieved.
simParam an object of SimParam

Value

Returns a matrix of genotypes

Examples

#Create founder haplotypes
founderPop = quickHaplo(nInd=10, nChr=1, segSites=15)

#Set simulation parameters
SP = SimParam$new(founderPop)
SP$addTraitA(10)
SP$addSnpChip(5)

#Create population
pop = newPop(founderPop, simParam=SP)
pullSegSiteGeno(pop, simParam=SP)

pullSegSiteHaplo Pull seg site haplotypes

Description

Retrieves haplotype data for all segregating sites

Usage

pullSegSiteHaplo(pop, haplo = "all”, chr = NULL, simParam = NULL)

Arguments
pop an object of Pop-class or RawPop-class
haplo either "all" for all haplotypes or an integer for a single set of haplotypes. Use a
value of 1 for female haplotyes and a value of 2 for male haplotypes.
chr a vector of chromosomes to retrieve. If NULL, all chromosome are retrieved.
simParam an object of SimParam
Value

Returns a matrix of haplotypes

40 pullSnpGeno

Examples

#Create founder haplotypes
founderPop = quickHaplo(nInd=10, nChr=1, segSites=15)

#Set simulation parameters
SP = SimParam$new(founderPop)
SP$addTraitA(10)
SP$addSnpChip(5)

#Create population
pop = newPop(founderPop, simParam=SP)
pullSegSiteHaplo(pop, simParam=SP)

pullSnpGeno Pull SNP genotype

Description

Retrieves SNP genotype data

Usage
pullSnpGeno(pop, snpChip = 1, chr = NULL, simParam = NULL)

Arguments
pop an object of Pop-class
snpChip an integer. Indicates which SNP chip’s genotypes to retrieve.
chr a vector of chromosomes to retrieve. If NULL, all chromosome are retrieved.
simParam an object of SimParam
Value

Returns a matrix of SNP genotypes.

Examples

#Create founder haplotypes
founderPop = quickHaplo(nInd=10, nChr=1, segSites=15)

#Set simulation parameters
SP = SimParam$new(founderPop)
SP$addTraitA(10)
SP$addSnpChip(5)

#Create population
pop = newPop(founderPop, simParam=SP)
pullSnpGeno(pop, simParam=SP)

pullSnpHaplo 41

pullSnpHaplo Pull SNP haplotypes

Description

Retrieves SNP haplotype data

Usage

pullSnpHaplo(pop, snpChip = 1, haplo = "all”, chr = NULL, simParam = NULL)

Arguments
pop an object of Pop-class
snpChip an integer. Indicates which SNP chip’s haplotypes to retrieve.
haplo either "all" for all haplotypes or an integer for a single set of haplotypes. Use a
value of 1 for female haplotyes and a value of 2 for male haplotypes.
chr a vector of chromosomes to retrieve. If NULL, all chromosome are retrieved.
simParam an object of SimParam
Value

Returns a matrix of SNP haplotypes.

Examples

#Create founder haplotypes
founderPop = quickHaplo(nInd=10, nChr=1, segSites=15)

#Set simulation parameters
SP = SimParam$new(founderPop)
SP$addTraitA(10)
SP$addSnpChip(5)

#Create population
pop = newPop(founderPop, simParam=SP)
pullSnpHaplo(pop, simParam=SP)

42 randCross

quickHaplo Quick founder haplotype simulation

Description
Rapidly simulates founder haplotypes by randomly sampling Os and 1s. This is equivalent to having
all loci with allele frequency 0.5 and being in linkage equilibrium.

Usage

quickHaplo(nInd, nChr, segSites, genLen = 1, ploidy = 2L, inbred = FALSE)

Arguments
nInd number of individuals to simulate
nChr number of chromosomes to simulate
segSites number of segregating sites per chromosome
genLen genetic length of chromosomes
ploidy ploidy level of organism
inbred should founder individuals be inbred

Value

an object of MapPop-class

Examples

Creates a populations of 10 outbred individuals
Their genome consists of 1 chromosome and 100 segregating sites
founderPop = quickHaplo(nInd=10,nChr=1,segSites=100)

randCross Make random crosses

Description

A wrapper for makeCross that randomly selects parental combinations for all possible combinan-
tions.

randCross

Usage

randCross(
pop,
nCrosses,
nProgeny =
balance
parents =
ignoreGend
simParam =

Arguments
pop
nCrosses
nProgeny
balance
parents
ignoreGender

simParam

Value

1,
TRUE,
NULL,
er = FALSE,
NULL

an object of Pop-class

total number of crosses to make

number of progeny per cross

if using gender, this option will balance the number of progeny per parent
an optional vector of indices for allowable parents

should gender be ignored

an object of SimParam

Returns an object of Pop-class

Examples

#Create founder haplotypes
founderPop = quickHaplo(nInd=10, nChr=1, segSites=10)

#Set simulation parameters
SP = SimParam$new(founderPop)

#Create population
pop = newPop(founderPop, simParam=SP)

#Make 10 crosses
pop2 = randCross(pop, 10, simParam=SP)

43

44

randCross2

randCross?2

Make random crosses

Description

A wrapper for makeCross2 that randomly selects parental combinations for all possible combinan-
tions between two populations.

Usage

randCross2(
females,
males,
nCrosses,

nProgeny = 1,

balance = TRUE,

femaleParents = NULL,
maleParents = NULL,
ignoreGender = FALSE,
simParam = NULL
)
Arguments
females an object of Pop-class for female parents.
males an object of Pop-class for male parents.
nCrosses total number of crosses to make
nProgeny number of progeny per cross
balance this option will balance the number of progeny per parent
femaleParents an optional vector of indices for allowable female parents
maleParents an optional vector of indices for allowable male parents
ignoreGender should gender be ignored
simParam an object of SimParam
Value

Returns an object of Pop-class

Examples

#Create founder haplotypes
founderPop = quickHaplo(nInd=10, nChr=1, segSites=10)

#Set simulation parameters
SP = SimParam$new(founderPop)

RawPop-class 45

#Create population
pop = newPop(founderPop, simParam=SP)

#Make 10 crosses
pop2 = randCross2(pop, pop, 10, simParam=SP)

RawPop-class Raw Population

Description

The raw population class contains only genotype data.

Usage
S4 method for signature 'RawPop'
x[1i]
S4 method for signature 'RawPop'
c(x, ...)
S4 method for signature 'RawPop'’
show(object)

Arguments
X a ’RawPop’ object
i index of individuals

additional "RawPop’ objects

object a 'RawPop’ object

Methods (by generic)
* [: Extract RawPop by index

* c: Combine multiple RawPops

* show: Show population summary

Slots

nInd number of individuals
nChr number of chromosomes
ploidy level of ploidy

nLoci number of loci per chromosome

46 reduceGenome

geno "matrix" containing chromosome genotypes. The "matrix" has dimensions nChr by 1 and
each element is a three dimensional array of raw values. The array dimensions are nLoci by
ploidy by nlnd.

reduceGenome Create individuals with reduced ploidy

Description

Creates new individuals from gametes. This function was created to model the creation of diploid
potatoes from tetraploid potatoes. It can be used on any population with an even ploidy level. The
newly created individuals will have half the ploidy level of the originals. The reduction can occur
with or without genetic recombination.

Usage

reduceGenome (
pop,
nProgeny = 1,
useFemale = TRUE,
keepParents = TRUE,
simRecomb = TRUE,
simParam = NULL

)
Arguments
pop an object of "Pop’ superclass
nProgeny total number of progeny per individual
useFemale should female recombination rates be used.
keepParents should previous parents be used for mother and father.
simRecomb should genetic recombination be modeled.
simParam an object of ’SimParam’ class
Value

Returns an object of Pop-class

Examples

#Create founder haplotypes
founderPop = quickHaplo(nInd=2, nChr=1, segSites=10)

#Set simulation parameters
SP = SimParam$new(founderPop)

#Create population

resetPop

pop = newPop(founderPop, simParam=SP)

#Create individuals with reduced ploidy
pop2 = reduceGenome(pop, simParam=SP)

47

resetPop Reset population

Description

Recalculates a population’s genetic values and resets phenotypes and EBVs.

Usage

resetPop(pop, simParam = NULL)

Arguments
pop an object of Pop-class
simParam an object of SimParam
Value

an object of Pop-class

Examples

#Create founder haplotypes
founderPop = quickHaplo(nInd=2, nChr=1, segSites=10)

#Set simulation parameters
SP = SimParam$new(founderPop)
SP$addTraitA(10)

#Create population
pop = newPop(founderPop, simParam=SP)

#Rescale to set mean to 1
SP$rescaleTraits(mean=1)
pop = resetPop(pop, simParam=SP)

48

RRBLUP

RRBLUP

RR-BLUP Model

Description

Usage
RRBLUP(
pop,
traits = 1,
use = "pheno",
snpChip = 1,

useQtl = FALSE,
maxIter = 1000L,
useReps = FALSE,
simParam = NULL,

Arguments

pop
traits

use

snpChip

useQtl

maxIter

useReps

simParam

Fits an RR-BLUP model for genomic predictions.

a Pop-class to serve as the training population

ing a single value.

an integer indicating which SNP chip genotype to use
should QTL genotypes be used instead of a SNP chip. If TRUE, snpChip spec-

an integer indicating the trait or traits to model, or a function of the traits return-

train model using phenotypes "pheno", genetic values "gv", estimated breeding
values "ebv", breeding values "bv", or randomly "rand"

ifies which trait’s QTL to use, and thus these QTL may not match the QTL

underlying the phenotype supplied in traits.

1.

additional arguments if using a function for traits

Examples

an object of SimParam

#Create founder haplotypes
founderPop = quickHaplo(nInd=10, nChr=1, segSites=20)

#Set simulation parameters
SP = SimParam$new(founderPop)

maximum number of iterations. Only used when number of traits is greater than

should population’s reps slot be used to model heterogeneous error variance

RRBLUP2 49

SP$addTraitA(10)
SP$setVarE(h2=0.5)
SP$addSnpChip(10)

#Create population
pop = newPop(founderPop, simParam=SP)

#Run GS model and set EBV
ans = RRBLUP(pop, simParam=SP)
pop = setEBV(pop, ans, simParam=SP)

#Evaluate accuracy
cor(gv(pop), ebv(pop))

RRBLUP2 RR-BLUP Model 2

Description

Fits an RR-BLUP model for genomic predictions. This implementation is meant for situations
where RRBLUP is too slow. Note that RRBLUP2 is only faster in certain situations, see details
below. Most users should use RRBLUP.

Usage
RRBLUP2(
pop,
traits = 1,
use = "pheno”,
snpChip = 1,

useQtl = FALSE,
maxIter = 10,

Vu = NULL,
Ve = NULL,
useEM = TRUE,
tol = 1e-06,

useReps = FALSE,
simParam = NULL,

)
Arguments
pop a Pop-class to serve as the training population
traits an integer indicating the trait to model or a function of the traits returning a

single value. Unlike RRBLUP, only univariate models are supported.

50

RRBLUP2
use train model using phenotypes "pheno", genetic values "gv", estimated breeding
values "ebv", breeding values "bv", or randomly "rand"
snpChip an integer indicating which SNP chip genotype to use
useQtl should QTL genotypes be used instead of a SNP chip. If TRUE, snpChip spec-

ifies which trait’s QTL to use, and thus these QTL may not match the QTL
underlying the phenotype supplied in traits.

maxIter maximum number of iterations.

Vu marker effect variance. If value is NULL, a reasonable starting point is chosen
automatically.

Ve error variance. If value is NULL, a reasonable starting point is chosen automat-
ically.

useEM use EM to solve variance components. If false, the initial values are considered
true.

tol tolerance for EM algorithm convergence

useReps should population’s reps slot be used to model heterogeneous error variance

simParam an object of SimParam

additional arguments if using a function for traits

Details

The RRBLUP2 function works best when the number of markers is not too large. This is because it
solves the RR-BLUP problem by setting up and solving Henderson’s mixed model equations. Solv-
ing these equations involves a square matrix with dimensions equal to the number of fixed effects
plus the number of random effects (markers). Whereas the RRBLUP function solves the RR-BLUP
problem using the EMMA approach. This approach involves a square matrix with dimensions equal
to the number of phenotypic records. This means that the RRBLUP2 function uses less memory
than RRBLUP when the number of markers is approximately equal to or smaller than the number
of phenotypic records.

The RRBLUP2 function is not recommend for cases where the variance components are unknown.
This is uses the EM algorithm to solve for unknown variance components, which is generally con-
siderably slower than the EMMA approach of RRBLUP. The number of iterations for the EM algorith
is set by maxIter. The default value is typically too small for convergence. When the algorithm fails
to converage a warning is displayed, but results are given for the last iteration. These results may
be "good enough". However we make no claim to this effect, because we can not generalize to all
possible use cases.

The RRBLUP?2 function can quickly solve the mixed model equations without estimating variance
components. The variance components are set by defining Vu and Ve. Estimation of components is
suppressed by setting useEM to false. This may be useful if the model is being retrained multiple
times during the simulation. You could run RRBLUP function the first time the model is trained, and
then use the variance components from this output for all future runs with the RRBLUP2 functions.
Again, we can make no claim to the general robustness of this approach.

Examples

#Create founder haplotypes

RRBLUPMemUse 51

founderPop = quickHaplo(nInd=1@, nChr=1, segSites=20)

#Set simulation parameters
SP = SimParam$new(founderPop)
SP$addTraitA(10)
SP$setVarE(h2=0.5)
SP$addSnpChip(10)

#Create population
pop = newPop(founderPop, simParam=SP)

#Run GS model and set EBV
ans = RRBLUP2(pop, simParam=SP)
pop = setEBV(pop, ans, simParam=SP)

#Evaluate accuracy
cor(gv(pop), ebv(pop))

RRBLUPMemUse RRBLUP Memory Usage

Description
Estimates the amount of RAM needed to run the RRBLUP and its related functions for a given training
population size. Note that this function may underestimate total usage.

Usage

RRBLUPMemUse (nInd, nMarker, model = "REG")

Arguments
nInd the number of individuals in the training population
nMarker the number of markers per individual
model either "REG", "GCA", or "SCA" for RRBLUP RRBLUP_GCA and RRBLUP_SCA re-
spectively.
Value

Returns an estimate for the required gigabytes of RAM

Examples

RRBLUPMemUse (nNInd=1000, nMarker=5000)

52 RRBLUP_D

RRBLUP_D RR-BLUP Model with Dominance

Description

Fits an RR-BLUP model for genomic predictions that includes dominance effects.

Usage
RRBLUP_D(
pop,
traits = 1,
use = "pheno”,
snpChip = 1,

useQtl = FALSE,
maxIter = 40L,

useReps = FALSE,
simParam = NULL,

)
Arguments
pop a Pop-class to serve as the training population
traits an integer indicating the trait to model, or a function of the traits returning a
single value.
use train model using phenotypes "pheno", genetic values "gv", estimated breeding
values "ebv", breeding values "bv", or randomly "rand"
snpChip an integer indicating which SNP chip genotype to use
useQtl should QTL genotypes be used instead of a SNP chip. If TRUE, snpChip spec-
ifies which trait’s QTL to use, and thus these QTL may not match the QTL
underlying the phenotype supplied in traits.
maxIter maximum number of iterations. Only used when number of traits is greater than
1.
useReps should population’s reps slot be used to model heterogeneous error variance
simParam an object of SimParam
additional arguments if using a function for traits
Examples

#Create founder haplotypes
founderPop = quickHaplo(nInd=10, nChr=1, segSites=20)

#Set simulation parameters
SP = SimParam$new(founderPop)

RRBLUP_D?2 53

SP$addTraitAD(10, meanDD=0.5)
SP$setVarE(h2=0.5)
SP$addSnpChip(10)

#Create population
pop = newPop(founderPop, simParam=SP)

#Run GS model and set EBV
ans = RRBLUP_D(pop, simParam=SP)
pop = setEBV(pop, ans, simParam=SP)

#Evaluate accuracy
cor(gv(pop), ebv(pop))

RRBLUP_D2 RR-BLUP with Dominance Model 2

Description

Fits an RR-BLUP model for genomic predictions that includes dominance effects. This implemen-
tation is meant for situations where RRBLUP_D is too slow. Note that RRBLUP_D?2 is only faster in
certain situations. Most users should use RRBLUP_D.

Usage

RRBLUP_D2(
pop,
traits = 1,
use = "pheno",
snpChip = 1,
useQtl = FALSE,
maxIter = 10,

Va = NULL,
Vd = NULL,
Ve = NULL,
useEM = TRUE,
tol = 1e-06,

useReps = FALSE,
simParam = NULL,

)
Arguments
pop a Pop-class to serve as the training population
traits an integer indicating the trait to model, or a function of the traits returning a

single value.

54

use

snpChip

useQtl

maxIter

Va

vd

Ve

useEM

tol
useReps

simParam

Examples

RRBLUP_D2

train model using phenotypes "pheno", genetic values "gv", estimated breeding
values "ebv", breeding values "bv", or randomly "rand"

an integer indicating which SNP chip genotype to use

should QTL genotypes be used instead of a SNP chip. If TRUE, snpChip spec-
ifies which trait’s QTL to use, and thus these QTL may not match the QTL
underlying the phenotype supplied in traits.

maximum number of iterations. Only used when number of traits is greater than
1.

marker effect variance for additive effects. If value is NULL, a reasonable start-
ing point is chosen automatically.

marker effect variance for dominance effects. If value is NULL, a reasonable
starting point is chosen automatically.

error variance. If value is NULL, a reasonable starting point is chosen automat-
ically.

use EM to solve variance components. If false, the initial values are considered
true.

tolerance for EM algorithm convergence
should population’s reps slot be used to model heterogeneous error variance
an object of SimParam

additional arguments if using a function for traits

#Create founder haplotypes
founderPop = quickHaplo(nInd=10, nChr=1, segSites=20)

#Set simulation parameters
SP = SimParam$new(founderPop)
SP$addTraitAD(10, meanDD=0.5)
SP$setVarE(h2=0.5)

SP$addSnpChip(10)

#Create population
pop = newPop(founderPop, simParam=SP)

#Run GS model and set EBV
ans = RRBLUP_D2(pop, simParam=SP)
pop = setEBV(pop, ans, simParam=SP)

#Evaluate accuracy
cor(gv(pop), ebv(pop))

RRBLUP_GCA 55

RRBLUP_GCA RR-BLUP GCA Model

Description

Fits an RR-BLUP model that estimates seperate marker effects for females and males. Useful for
predicting GCA of parents in single cross hybrids. Can also predict performance of specific single
cross hybrids.

Usage

RRBLUP_GCA(
pop,
traits = 1,
use = "pheno”,
snpChip = 1,
useQtl = FALSE,
maxIter = 40L,
useReps = FALSE,
simParam = NULL,

)
Arguments
pop a Pop-class to serve as the training population
traits an integer indicating the trait to model, or a function of the traits returning a
single value.
use train model using phenotypes "pheno", genetic values "gv", estimated breeding
values "ebv", breeding values "bv", or randomly "rand"
snpChip an integer indicating which SNP chip genotype to use
useQtl should QTL genotypes be used instead of a SNP chip. If TRUE, snpChip spec-
ifies which trait’s QTL to use, and thus these QTL may not match the QTL
underlying the phenotype supplied in traits.
maxIter maximum number of iterations for convergence.
useReps should population’s reps slot be used to model heterogeneous error variance
simParam an object of SimParam
additional arguments if using a function for traits
Examples

#Create founder haplotypes
founderPop = quickHaplo(nInd=1@, nChr=1, segSites=20)

#Set simulation parameters

56

SP = SimParam$new(founderPop)
SP$addTraitA(10)
SP$setVarE(h2=0.5)
SP$addSnpChip(10)

#Create population
pop = newPop(founderPop, simParam=SP)

#Run GS model and set EBV
ans = RRBLUP_GCA(pop, simParam=SP)
pop = setEBV(pop, ans, simParam=SP)

#Evaluate accuracy
cor(gv(pop), ebv(pop))

RRBLUP_GCA2

RRBLUP_GCA2 RR-BLUP GCA Model 2

Description

Fits an RR-BLUP model that estimates seperate marker effects for females and males. This im-
plementation is meant for situations where RRBLUP_GCA is too slow. Note that RRBLUP_GCA?2 is

only faster in certain situations. Most users should use RRBLUP_GCA.

Usage

RRBLUP_GCA2(
pop,
traits = 1,
use = "pheno”,
snpChip = 1,
useQtl = FALSE,
maxIter = 10,
VuF = NULL,
VuM = NULL,
Ve = NULL,
useEM = TRUE,
tol = 1e-06,
useReps = FALSE,
simParam = NULL,

Arguments

pop a Pop-class to serve as the training population

traits an integer indicating the trait to model, or a function of the traits returning a

single value.

RRBLUP_GCA2

use

snpChip

useQtl

maxIter

VuF

VuM

Ve

useEM

tol
useReps

simParam

Examples

57

train model using phenotypes "pheno", genetic values "gv", estimated breeding
values "ebv", breeding values "bv", or randomly "rand"

an integer indicating which SNP chip genotype to use

should QTL genotypes be used instead of a SNP chip. If TRUE, snpChip spec-
ifies which trait’s QTL to use, and thus these QTL may not match the QTL
underlying the phenotype supplied in traits.

maximum number of iterations for convergence.

marker effect variance for females. If value is NULL, a reasonable starting point
is chosen automatically.

marker effect variance for males. If value is NULL, a reasonable starting point
is chosen automatically.

error variance. If value is NULL, a reasonable starting point is chosen automat-
ically.

use EM to solve variance components. If false, the initial values are considered
true.

tolerance for EM algorithm convergence
should population’s reps slot be used to model heterogeneous error variance
an object of SimParam

additional arguments if using a function for traits

#Create founder haplotypes
founderPop = quickHaplo(nInd=1@, nChr=1, segSites=20)

#Set simulation parameters
SP = SimParam$new(founderPop)

SP$addTraitA(10)

SP$setVarE(h2=0.5)

SP$addSnpChip(10)

#Create population
pop = newPop(founderPop, simParam=SP)

#Run GS model and set EBV
ans = RRBLUP_GCA2(pop, simParam=SP)
pop = setEBV(pop, ans, simParam=SP)

#Evaluate accuracy
cor(gv(pop), ebv(pop))

58 RRBLUP_SCA

RRBLUP_SCA RR-BLUP SCA Model

Description

An extention of RRBLUP_GCA that adds dominance effects. Note that we have not seen any consistent
benefit of this model over RRBLUP_GCA.

Usage

RRBLUP_SCA(
pop,
traits = 1,
use = "pheno”,
snpChip = 1,
useQtl = FALSE,
maxIter = 40L,
useReps = FALSE,
simParam = NULL,

)
Arguments
pop a Pop-class to serve as the training population
traits an integer indicating the trait to model, or a function of the traits returning a
single value.
use train model using phenotypes "pheno", genetic values "gv", estimated breeding
values "ebv", breeding values "bv", or randomly "rand"
snpChip an integer indicating which SNP chip genotype to use
useQtl should QTL genotypes be used instead of a SNP chip. If TRUE, snpChip spec-
ifies which trait’s QTL to use, and thus these QTL may not match the QTL
underlying the phenotype supplied in traits.
maxIter maximum number of iterations for convergence.
useReps should population’s reps slot be used to model heterogeneous error variance
simParam an object of SimParam
additional arguments if using a function for traits
Examples

#Create founder haplotypes
founderPop = quickHaplo(nInd=2, nChr=1, segSites=20)

#Set simulation parameters
SP = SimParam$new(founderPop)

RRBLUP_SCA2 59

SP$addTraitA(10)
SP$setVarE(h2=0.5)
SP$addSnpChip(10)

#Create population
pop = newPop(founderPop, simParam=SP)

#Run GS model and set EBV
ans = RRBLUP_SCA(pop, simParam=SP)
pop = setEBV(pop, ans, simParam=SP)

#Evaluate accuracy
cor(gv(pop), ebv(pop))

RRBLUP_SCA2 RR-BLUP SCA Model 2

Description

Fits an RR-BLUP model that estimates seperate additive effects for females and males and a domi-
nance effect. This implementation is meant for situations where RRBLUP_SCA is too slow. Note that
RRBLUP_SCAZ? is only faster in certain situations. Most users should use RRBLUP_SCA.

Usage

RRBLUP_SCA2(
pop,
traits = 1,
use = "pheno",
snpChip = 1,
useQtl = FALSE,
maxIter = 10,

VuF = NULL,
VuM = NULL,
VuD = NULL,
Ve = NULL,
useEM = TRUE,
tol = 1e-06,

useReps = FALSE,
simParam = NULL,

Arguments

pop a Pop-class to serve as the training population

60

traits

use

snpChip

useQtl

maxIter

VuF

VuM

VuD

Ve

useEM

tol
useReps

simParam

Examples

RRBLUP_SCA2

an integer indicating the trait to model, or a function of the traits returning a
single value.

train model using phenotypes "pheno”, genetic values "gv", estimated breeding
values "ebv", breeding values "bv", or randomly "rand"

an integer indicating which SNP chip genotype to use

should QTL genotypes be used instead of a SNP chip. If TRUE, snpChip spec-
ifies which trait’s QTL to use, and thus these QTL may not match the QTL
underlying the phenotype supplied in traits.

maximum number of iterations for convergence.

marker effect variance for females. If value is NULL, a reasonable starting point
is chosen automatically.

marker effect variance for males. If value is NULL, a reasonable starting point
is chosen automatically.

marker effect variance for dominance. If value is NULL, a reasonable starting
point is chosen automatically.

error variance. If value is NULL, a reasonable starting point is chosen automat-
ically.

use EM to solve variance components. If false, the initial values are considered
true.

tolerance for EM algorithm convergence
should population’s reps slot be used to model heterogeneous error variance
an object of SimParam

additional arguments if using a function for traits

#Create founder haplotypes
founderPop = quickHaplo(nInd=10, nChr=1, segSites=20)

#Set simulation parameters
SP = SimParam$new(founderPop)

SP$addTraitA(10)

SP$setVarkE(h2=0.5)

SP$addSnpChip(10)

#Create population
pop = newPop(founderPop, simParam=SP)

#Run GS model and set EBV

ans

RRBLUP_SCA2(pop, simParam=SP)

pop = setEBV(pop, ans, simParam=SP)

#Evaluate accuracy
cor(gv(pop), ebv(pop))

RRsol-class 61

RRsol-class RR-BLUP Solution

Description

Contains output from AlphaSimR’s genomic selection functions.

Slots

gv Trait(s) for estimating genetic values

bv Trait(s) for estimating breeding values

female Trait(s) for estimating GCA in the female pool
male Trait(s) for estimating GCA in the male pool

Vu Estimated marker variance(s)

Ve Estimated error variance

runMacs Create founder haplotypes using MaCS

Description

Uses the MaCS software to produce founder haplotypes.

Usage

runMacs(
nind,
nChr = 1,
segSites = NULL,
inbred = FALSE,
species = "GENERIC",
split = NULL,
ploidy = 2L,
manualCommand = NULL,
manualGenLen = NULL,
nThreads = NULL

62

Arguments

nInd
nChr

segSites

inbred
species

split

ploidy
manualCommand

manualGenLen

nThreads

Details

runMacs?2

number of individuals to simulate
number of chromosomes to simulate

number of segregating sites to keep per chromosome. A value of NULL results
in all sites being retained.

should founder individuals be inbred

species history to simulate. See details.

an optional historic population split in terms of generations ago.
ploidy level of organism

user provided MaCS options. For advanced users only.

user provided genetic length. This must be supplied if using manualCommand.
If not using manualCommand, this value will replace the predefined genetic
length for the species. However, this the genetic length is only used by Al-
phaSimR and is not passed to MaCS, so MaCS still uses the predefined genetic
length. For advanced users only.

if OpenMP is available, this will allow for simulating chromosomes in parallel.
If the value is NULL, the number of threads is automatically detected.

The current species histories are included: GENERIC, CATTLE, WHEAT, MAIZE, and EURO-

PEAN.

Value

an object of MapPop-class

Examples

Creates a populations of 10 outbred individuals
Their genome consists of 1 chromosome and 100 segregating sites
founderPop = runMacs(nInd=10,nChr=1,segSites=100)

runMacs?2

Alternative wrapper for MaCS

Description

A wrapper function for runMacs. This wrapper is designed to be easier to use than supply custom
comands to manualCommand in runMacs. It effectively automates the creation of an appropriate
manualCommand using user supplied variables, but only deals with a subset of the possibilities.
The defaults were chosen to match species="GENERIC" in runMacs.

runMacs2

Usage

runMacs2(

63

nind,

nChr = 1,

segSites = NULL,

Ne = 100,

bp = 1e+08,

genLen = 1,

mutRate = 2.5e-08,

histNe = c(500, 1500, 6000, 12000, 1e+@5),
histGen = c(100, 1000, 10000, 1e+0@5, 1et0@6),
inbred = FALSE,

split = NULL,
ploidy = 2L,
returnCommand = FALSE,
nThreads = NULL
)
Arguments
nInd number of individuals to simulate
nChr number of chromosomes to simulate
segSites number of segregating sites to keep per chromosome
Ne effective population size
bp base pair length of chromosome
genLen genetic length of chromosome in Morgans
mutRate per base pair mutation rate
histNe effective population size in previous generations
histGen number of generations ago for effective population sizes given in histNe
inbred should founder individuals be inbred
split an optional historic population split in terms of generations ago
ploidy ploidy level of organism
returnCommand should the command passed to manualCommand in runMacs be returned. If
TRUE, MaCS will not be called and the command is returned instead.
nThreads if OpenMP is available, this will allow for simulating chromosomes in parallel.
If the value is NULL, the number of threads is automatically detected.
Value

an object of MapPop-class or if returnCommand is true a string giving the MaCS command passed
to the manualCommand argument of runMacs.

64 sampleHaplo

Examples

Creates a populations of 10 outbred individuals
Their genome consists of 1 chromosome and 100 segregating sites
The command is equivalent to using species="GENERIC" in runMacs
founderPop = runMacs2(nInd=10,nChr=1,segSites=100)

sampleHaplo Sample haplotypes from a MapPop

Description

Creates a new MapPop-class from an existing MapPop-class by randomly sampling haplotypes.

Usage

sampleHaplo(mapPop, nInd, inbred = FALSE, ploidy = NULL, replace = TRUE)

Arguments
mapPop the MapPop-class used to sample haplotypes
nInd the number of individuals to create
inbred should new individuals be fully inbred
ploidy new ploidy level for organism. If NULL, the ploidy level of the mapPop is used.
replace should haplotypes be sampled with replacement
Value

an object of MapPop-class

Examples

founderPop = quickHaplo(nInd=2,nChr=2,segSites=11, inbred=TRUE)
founderPop = sampleHaplo(mapPop=founderPop,nInd=20)

selectCross 65

selectCross Select and randomly cross

Description

This is a wrapper that combines the functionalities of randCross and selectInd. The purpose
of this wrapper is to combine both selection and crossing in one function call that minimized the
amount of intermediate populations created. This reduces RAM usage and simplifies code writing.
Note that this wrapper does not provide the full functionality of either function.

Usage

selectCross(
pop,
nInd = NULL,
nFemale = NULL,
nMale = NULL,
nCrosses,
nProgeny = 1,
trait = 1,
use = "pheno”,

selectTop = TRUE,
simParam = NULL,

L

balance = TRUE

)
Arguments

pop an object of Pop-class

nInd the number of individuals to select. These individuals are selected without re-
gards to gender and it supercedes values for nFemale and nMale. Thus if the
simulation uses gender, it is likely better to leave this value as NULL and use
nFemale and nMale instead.

nFemale the number of females to select. This value is ignored if nInd is set.

nMale the number of males to select. This value is ignored if nlnd is set.

nCrosses total number of crosses to make

nProgeny number of progeny per cross

trait the trait for selection. Either a number indicating a single trait or a function
returning a vector of length nlnd.

use select on genetic values "gv", estimated breeding values "ebv", breeding values
"bv", phenotypes "pheno", or randomly "rand"

selectTop selects highest values if true. Selects lowest values if false.

simParam an object of SimParam

66 selectFam

additional arguments if using a function for trait

balance if using gender, this option will balance the number of progeny per parent. This
argument occurs after ..., so the argument name must be matched exactly.

Value

Returns an object of Pop-class

Examples

#Create founder haplotypes
founderPop = quickHaplo(nInd=10, nChr=1, segSites=10)

#Set simulation parameters
SP = SimParam$new(founderPop)
SP$addTraitA(10)
SP$setVarE(h2=0.5)

#Create population
pop = newPop(founderPop, simParam=SP)

#Select 4 individuals and make 8 crosses
pop2 = selectCross(pop, nInd=4, nCrosses=8, simParam=SP)

selectFam Select families

Description

Selects a subset of full-sib families from a population.

Usage

selectFam(
pop,
nFam,
trait = 1,
use = "pheno”,
gender = "B",
famType = "B",
selectTop = TRUE,
returnPop = TRUE,
candidates = NULL,
simParam = NULL,

selectFam

Arguments

pop
nFam

trait

use

gender

famType

selectTop

returnPop

candidates

simParam

Value

67

and object of Pop-class or HybridPop-class
the number of families to select

the trait for selection. Either a number indicating a single trait or a function
returning a vector of length nInd.

select on genetic values "gv", estimated breeding values "ebv", breeding values
"bv", phenotypes "pheno", or randomly "rand"

which gender to select. Use "B" for both, "F" for females and "M" for males. If
the simulation is not using gender, the argument is ignored.

which type of family to select. Use "B" for full-sib families, "F" for half-sib
families on female side and "M" for half-sib families on the male side.

selects highest values if true. Selects lowest values if false.

should results be returned as a Pop-class. If FALSE, only the index of selected
individuals is returned.

an optional vector of eligible selection candidates.
an object of SimParam

additional arguments if using a function for trait

Returns an object of Pop-class or HybridPop-class

Examples

#Create founder haplotypes
founderPop = quickHaplo(nInd=10, nChr=1, segSites=10)

#Set simulation parameters
SP = SimParam$new(founderPop)

SP$addTraitA(10)

SP$setVarE(h2=0.5)

#Create population
pop = newPop(founderPop, simParam=SP)

#Create 3 biparental families with 10 progeny
pop2 = randCross(pop, nCrosses=3, nProgeny=10, simParam=SP)

#Select best 2 families
pop3 = selectFam(pop2, 2, simParam=SP)

68

selectInd

selectInd

Select individuals

Description

Selects a subset of nInd individuals from a population.

Usage

selectInd(

pop,
nInd,

trait = 1,

use = "pheno",
gender = "B",
selectTop = TRUE,
returnPop = TRUE,

candidates = NULL,
simParam = NULL,
)
Arguments
pop and object of Pop-class or HybridPop-class
nInd the number of individuals to select
trait the trait for selection. Either a number indicating a single trait or a function
returning a vector of length nInd.
use select on genetic values "gv", estimated breeding values "ebv", breeding values
"bv", phenotypes "pheno", or randomly "rand"
gender which gender to select. Use "B" for both, "F" for females and "M" for males. If
the simulation is not using gender, the argument is ignored.
selectTop selects highest values if true. Selects lowest values if false.
returnPop should results be returned as a Pop-class. If FALSE, only the index of selected
individuals is returned.
candidates an optional vector of eligible selection candidates.
simParam an object of SimParam
additional arguments if using a function for trait
Value

Returns an object of Pop-class or HybridPop-class

selectOP 69

Examples

#Create founder haplotypes
founderPop = quickHaplo(nInd=10, nChr=1, segSites=10)

#Set simulation parameters
SP = SimParam$new(founderPop)
SP$addTraitA(10)
SP$setVarE(h2=0.5)

#Create population
pop = newPop(founderPop, simParam=SP)

#Select best 5
pop2 = selectInd(pop, 5, simParam=SP)

selectOP Select open pollinating plants

Description

This function models selection in an open pollinating plant population. It allows for varying the
percentage of selfing. The function also provides an option for modeling selection as occuring
before or after pollination.

Usage

selectOP(
pop,
nInd,
nSeeds,
probSelf = 0,
pollenControl = FALSE,
trait = 1,
use = "pheno”,
selectTop = TRUE,
candidates = NULL,
simParam = NULL,

)
Arguments
pop an object of Pop-class
nInd the number of plants to select
nSeeds number of seeds per plant

probSelf percentage of seeds expected from selfing. Value ranges from O to 1.

70 selectWithinFam

pollenControl are plants selected before pollination

trait the trait for selection. Either a number indicating a single trait or a function
returning a vector of length nInd.

use select on genetic values "gv", estimated breeding values "ebv", breeding values
"bv", phenotypes "pheno", or randomly "rand"

selectTop selects highest values if true. Selects lowest values if false.

candidates an optional vector of eligible selection candidates.

simParam an object of SimParam

additional arguments if using a function for trait

Value

Returns an object of Pop-class

Examples

#Create founder haplotypes
founderPop = quickHaplo(nInd=10, nChr=1, segSites=10)

#Set simulation parameters
SP = SimParam$new(founderPop)
SP$addTraitA(10)
SP$setVarE(h2=0.5)

#Create population
pop = newPop(founderPop, simParam=SP)

#Create new population by selecting the best 3 plant
#Assuming 50% selfing in plants and 10 seeds per plant
pop2 = selectOP(pop, nInd=3, nSeeds=10, probSelf=0.5, simParam=SP)

selectWithinFam Select individuals within families

Description

Selects a subset of nlnd individuals from each full-sib family within a population. Will return all
individuals from a full-sib family if it has less than or equal to nInd individuals.

Usage
selectWithinFam(
pop,
nind,
trait = 1,

use = "pheno",

selectWithinFam 71
gender = "B”,
famType = "B",
selectTop = TRUE,
returnPop = TRUE,
candidates = NULL,
simParam = NULL,
)
Arguments
pop and object of Pop-class or HybridPop-class
nInd the number of individuals to select within a family
trait the trait for selection. Either a number indicating a single trait or a function
returning a vector of length nInd.
use select on genetic values "gv", estimated breeding values "ebv", breeding values
"bv", phenotypes "pheno", or randomly "rand"
gender which gender to select. Use "B" for both, "F" for females and "M" for males. If
the simulation is not using gender, the argument is ignored.
famType which type of family to select. Use "B" for full-sib families, "F" for half-sib
families on female side and "M" for half-sib families on the male side.
selectTop selects highest values if true. Selects lowest values if false.
returnPop should results be returned as a Pop-class. If FALSE, only the index of selected
individuals is returned.
candidates an optional vector of eligible selection candidates.
simParam an object of SimParam
additional arguments if using a function for trait
Value

Returns an object of Pop-class or HybridPop-class

Examples

#Create founder haplotypes
founderPop = quickHaplo(nInd=1@, nChr=1, segSites=10)

#Set simulation parameters
SP = SimParam$new(founderPop)
SP$addTraitA(10)
SP$setVarE(h2=0.5)

#Create population
pop = newPop(founderPop, simParam=SP)

#Create 3 biparental families with 1@ progeny
pop2 = randCross(pop, nCrosses=3, nProgeny=10, simParam=SP)

72 self

#Select best individual per family
pop3 = selectWithinFam(pop2, 1, simParam=SP)

self Self individuals

Description

Creates selfed progeny from each individual in a population. Only works when gender is "no".

Usage

self(pop, nProgeny = 1, parents = NULL, keepParents = TRUE, simParam = NULL)

Arguments
pop an object of Pop-class
nProgeny total number of selfed progeny per individual
parents an optional vector of indices for allowable parents
keepParents should previous parents be used for mother and father.
simParam an object of SimParam

Value

Returns an object of Pop-class

Examples

#Create founder haplotypes
founderPop = quickHaplo(nInd=2, nChr=1, segSites=10)

#Set simulation parameters
SP = SimParam$new(founderPop)

#Create population
pop = newPop(founderPop, simParam=SP)

#Self pollinate each individual
pop2 = self(pop, simParam=SP)

sellndex 73

selIndex Selection index

Description

Calculates values of a selection index given trait values and weights. This function is intended to
be used in combination with selection functions working on populations such as selectInd.

Usage

selIndex(Y, b, scale = FALSE)

Arguments

Y a matrix of trait values

b a vector of weights

scale should Y be scaled and centered
Examples

#Create founder haplotypes
founderPop = quickHaplo(nInd=10, nChr=1, segSites=10)

#Set simulation parameters

SP = SimParam$new(founderPop)

#Model two genetically correlated traits

G = 1.5%xdiag(2)-0.5 #Genetic correlation matrix
SP$addTraitA(10, mean=c(0,0), var=c(1,1), corA=G)
SP$setVarkE(h2=c(0.5,0.5))

#Create population
pop = newPop(founderPop, simParam=SP)

#Calculate Smith-Hazel weights
econWt = c(1, 1)
b = smithHazel(econWt, varG(pop), varP(pop))

#Selection 2 best individuals using Smith-Hazel index

#sellndex is used as a trait

pop2 = selectInd(pop, nInd=2, trait=sellndex,
simParam=SP, b=b)

74 setEBV

sellnt Selection intensity

Description

Calculates the standardized selection intensity

Usage

sellnt(p)

Arguments

p the proportion of individuals selected

Examples

sellnt(0.1)

setEBV Set EBV

Description

Adds genomic estimated values to a populations’s EBV slot using output from a genomic selection
functions. The genomic estimated values can be either estimated breeding values, estimated genetic
values, or estimated general combining values.

Usage

setEBV(
pop,
solution,
value = "gv",
targetPop = NULL,
append = FALSE,
simParam = NULL

setPheno

Arguments

pop
solution

value

targetPop

append

simParam

Value

75

an object of Pop-class
an object of RRsol-class

the genomic value to be estimated. Can be either "gv", "bv", "female", or
"male".

an optional target population that can be used when value is "bv", "female", or
"male". When supplied, the allele frequency in the targetPop is used to set these
values.

should estimated values be appended to existing data in the EBV slot. If TRUE,
a new column is added. If FALSE, existing data is replaced with the new esti-
mates.

an object of SimParam

Returns an object of Pop-class

Examples

#Create founder haplotypes
founderPop = quickHaplo(nInd=1@, nChr=1, segSites=20)

#Set simulation parameters
SP = SimParam$new(founderPop)

SP$addTraitA(10)

SP$setVarE(h2=0.5)

SP$addSnpChip(10)

#Create population
pop = newPop(founderPop, simParam=SP)

#Run GS model and set EBV
ans = RRBLUP(pop, simParam=SP)
pop = setEBV(pop, ans, simParam=SP)

#Evaluate accuracy
cor(gv(pop), ebv(pop))

setPheno

Set phenotypes

Description

Sets phenotypes for all traits by adding random error from a multivariate normal distribution.

76 setPheno

Usage

setPheno(
pop,
varE = NULL,
reps = 1,
fixeff = 1L,
p = NULL,
onlyPheno = FALSE,
simParam = NULL

)
Arguments
pop an object of Pop-class or HybridPop-class
vark error variances for phenotype. A vector of length nTraits for independent error
or a square matrix of dimensions nTraits for correlated errors. If NULL, value
in simParam is used.
reps number of replications for phenotype. See details.
fixEff fixed effect to assign to the population. Used by genomic selection models only.
p the p-value for the environmental covariate used by GxE traits. If NULL, a value
is sampled at random.
onlyPheno should only the phenotype be returned, see return
simParam an object of SimParam
Details

The reps parameter is for convient representation of replicated data. It is intended to represent
replicated yield trials in plant breeding programs. In this case, varE is set to the plot error and reps
is set to the number of plots per entry. The resulting phenotype represents entry means.

Value
Returns an object of Pop-class or HybridPop-class if onlyPheno=FALSE, if onlyPheno=TRUE
a matrix is returned

Examples

#Create founder haplotypes
founderPop = quickHaplo(nInd=10, nChr=1, segSites=10)

#Set simulation parameters
SP = SimParam$new(founderPop)
SP$addTraitA(10)

#Create population
pop = newPop(founderPop, simParam=SP)

#Add phenotype with error variance of 1

setPhenoGCA 77

pop = setPheno(pop, varkE=1)

setPhenoGCA Set GCA as phenotype

Description

Calculates general combining ability from a set of testers and returns these values as phenotypes for
a population.

Usage
setPhenoGCA(

pop,
testers,
use = "pheno”,
varkE = NULL,
reps = 1,
fixEff = 1L,
p =20.5,

inbred = FALSE,
onlyPheno = FALSE,
simParam = NULL

)
Arguments
pop an object of Pop-class
testers an object of Pop-class
use true genetic value (gv) or phenotypes (pheno, default)
vark error variances for phenotype if use="pheno”. A vector of length nTraits for
independent error or a square matrix of dimensions nTraits for correlated errors.
reps number of replications for phenotype. See details.
fixEff fixed effect to assign to the population. Used by genomic selection models only.
p the p-value for the environmental covariate
inbred are both pop and testers fully inbred. They are only fully inbred if created by
newPop using inbred founders or by the makeDH function
onlyPheno should only the phenotype be returned, see return
simParam an object of SimParam
Details

The reps parameter is for convient representation of replicated data. It was intended for represen-
tation of replicated yield trials in plant breeding programs. In this case, varE is set to the plot error
and reps is set to the number plots per entry. The resulting phenotype would reflect the mean of all
replications.

78 SimParam

Value

Returns an object of Pop-class or a matrix if onlyPheno=TRUE

Examples

#Create founder haplotypes
founderPop = quickHaplo(nInd=10, nChr=1, segSites=10, inbred=TRUE)

#Set simulation parameters
SP = SimParam$new(founderPop)
SP$addTraitA(10)

#Create population
pop = newPop(founderPop, simParam=SP)

#Set phenotype to average per
pop2 = setPhenoGCA(pop, pop, use="gv", inbred=TRUE, simParam=SP)

SimParam Simulation parameters

Description

Container for global simulation parameters. Saving this object as SP will allow it to be accessed by
function defaults.

Public fields

nThreads number of threads used on platforms with OpenMP support
snpChips list of SNP chips

invalidQtl list of segregating sites that aren’t valid QTL
invalidSnp list of segregating sites that aren’t valid SNP
founderPop founder population used for variance scaling

v the crossover interference parameter for a gamma model of recombination. A value of 1 indicates
no crossover interference (e.g. Haldane mapping function). A value of 2.6 approximates the
degree of crossover interference implied by the Kosambi mapping function. (default is 1)

quadProb the probability of quadrivalent pairing in an autopolyploid. (default is 0)

Active bindings
traits list of traits
nChr number of chromosomes
nTraits number of traits

nSnpChips number of SNP chips

SimParam 79

segSites segregating sites per chromosome

gender is gender used for mating

sepMap are there seperate genetic maps for males and females
genMap "matrix" of chromosome genetic maps

femaleMap "matrix" of chromosome genetic maps for females
maleMap "matrix" of chromosome genetic maps for males
centromere position of centromeres genetic map
femaleCentromere position of centromeres on female genetic map
maleCentromere position of centromeres on male genetic map
lastId last ID number assigned

isTrackPed is pedigree being tracked

pedigree pedigree matrix for all individuals

isTrackRec is recombination being tracked

recHist list of historic recombination events

varA additive genetic variance in founderPop

varG total genetic variance in founderPop

varE default error variance

version the version of AlphaSimR used to generate this object

Methods
Public methods:

e SimParam$new()

e SimParam$setTrackPed()

e SimParam$setTrackRec()

e SimParam$resetPed()

* SimParam$restrSegSites()
e SimParam$setGender ()

e SimParam$addSnpChip()

e SimParam$addStructuredSnpChip()
e SimParam$addTraitA()

e SimParam$addTraitAD()

e SimParam$addTraitAG()

e SimParam$addTraitADG()

e SimParam$addTraitAE()

e SimParam$addTraitADE()

e SimParam$addTraitAEG()

e SimParam$addTraitADEG()
¢ SimParam$manAddTrait()

e SimParam$switchTrait()

80

SimParam

e SimParam$removeTrait()

* SimParam$setVarE()

e SimParam$setCorE()

e SimParam$rescaleTraits()
e SimParam$setRecombRatio()
e SimParam$switchGenMap()

e SimParam$switchFemaleMap()
e SimParam$switchMaleMap()
e SimParam$addToRec()

e SimParam$updatelLastId()

¢ SimParam$addToPed()

e SimParam$clone()

Method new(): Starts the process of building a new simulation by creating a new SimParam
object and assigning a founder population to the class. It is recommended that you save the
object with the name "SP", because subsequent functions will check your global enviroment for
an object of this name if their simParam arguments are NULL. This allows you to call these
functions without explicitly supplying a simParam argument with every call.

Usage:

SimParam$new(founderPop)

Arguments:

founderPop an object of MapPop-class

Examples:

#Create founder haplotypes
founderPop = quickHaplo(nInd=10, nChr=1, segSites=10)

#Set simulation parameters
SP = SimParam$new(founderPop)

Method setTrackPed(): Sets pedigree tracking for the simulation. By default pedigree tracking
is turned off. When turned on, the pedigree of all individuals created will be tracked, except those
created by hybridCross. Turning off pedigree tracking will turn off recombination tracking if it
is turned on.

Usage:

SimParam$setTrackPed(isTrackPed, force = FALSE)

Arguments:

isTrackPed should pedigree tracking be on.

force should the check for a running simulation be ignored. Only set to TRUE if you know

what you are doing.
Examples:

#Create founder haplotypes
founderPop = quickHaplo(nInd=10, nChr=1, segSites=10)

#Set simulation parameters
SP = SimParam$new(founderPop)
SP$setTrackPed(TRUE)

SimParam 81

Method setTrackRec(): Sets recombination tracking for the simulation. By default recombi-
nation tracking is turned off. When turned on recombination tracking will also turn on pedigree
tracking. Recombination tracking keeps records of all individuals created, except those created
by hybridCross, because their pedigree is not tracked.

Usage:

SimParam$setTrackRec(isTrackRec, force = FALSE)

Arguments:

isTrackRec should recombination tracking be on.

force should the check for a running simulation be ignored. Only set to TRUE if you know

what you are doing.
Examples:

#Create founder haplotypes
founderPop = quickHaplo(nInd=10, nChr=1, segSites=10)

#Set simulation parameters
SP = SimParam$new(founderPop)
SP$setTrackRec (TRUE)

Method resetPed(): Resets the internal lastld, the pedigree and recombination tracking (if in
use) to the supplied lastld. Be careful using this function because it may introduce a bug if you
use individuals from the deleted portion of the pedigree.

Usage:

SimParam$resetPed(lastId = @L)

Arguments:

lastId last ID to include in pedigree

Examples:

#Create founder haplotypes
founderPop = quickHaplo(nInd=10, nChr=1, segSites=10)

#Set simulation parameters
SP = SimParam$new(founderPop)

#Create population
pop = newPop(founderPop, simParam=SP)
pop@id # 1:10

#Create another population after reseting pedigree
SP$resetPed()

pop2 = newPop(founderPop, simParam=SP)

pop2@id # 1:10

Method restrSegSites(): Sets restrictions on which segregating sites can serve as SNP and/or
QTL.

Usage:

82

SimParam

SimParam$restrSegSites(
minQtlPerChr = NULL,
minSnpPerChr = NULL,
overlap = FALSE,
minSnpFreq = NULL
)
Arguments:
minQt1lPerChr the minimum number of segSites for QTLs. Can be a single value or a vector
values for each chromosome.
minSnpPerChr the minimum number of segSites for SNPs. Can be a single value or a vector
values for each chromosome.
overlap should SNP and QTL sites be allowed to overlap.
minSnpFreq minimum allowable frequency for SNP loci. No minimum SNP frequency is used
if value is NULL.

Examples:

#Create founder haplotypes
founderPop = quickHaplo(nInd=10, nChr=1, segSites=10)

#Set simulation parameters
SP = SimParam$new(founderPop)
SP$restrSegSites(minQtlPerChr=5, minSnpPerChr=5)

Method setGender(): Changes how gender is used in the simulation. The default gender
of a simulation is "no". To add gender to the simulation, run this function with "yes_sys" or
"yes_rand". The value "yes_sys" will systematically assign gender to newly created individuals
as first male, then female. Thus, odd numbers of individuals will have one more male than female.
The value "yes_rand" will randomly assign gender to individuals.

Usage:

SimParam$setGender(gender, force = FALSE)

Arguments:

gender acceptable value are "no", "yes_sys", or "yes_rand"

force should the check for a running simulation be ignored. Only set to TRUE if you know

what you are doing.

Examples:

#Create founder haplotypes
founderPop = quickHaplo(nInd=10, nChr=1, segSites=10)

#Set simulation parameters
SP = SimParam$new(founderPop)
SP$setGender ("yes_sys")
Method addSnpChip(): Randomly assigns eligble SNPs to a SNP chip

Usage:
SimParam$addSnpChip(nSnpPerChr, minSnpFreq = NULL, refPop = NULL)

Arguments:

SimParam 83

nSnpPerChr number of SNPs per chromosome. Can be a single value or nChr values.

minSnpFreq minimum allowable frequency for SNP loci. If NULL, no minimum frequency is
used.

refPop reference population for calculating SNP frequency. If NULL, the founder population
is used.
Examples:

#Create founder haplotypes
founderPop = quickHaplo(nInd=10, nChr=1, segSites=10)

#Set simulation parameters
SP = SimParam$new(founderPop)
SP$addSnpChip(10)

Method addStructuredSnpChip(): Randomly selects the number of snps in structure and then
assigns them to chips based on structure
Usage:
SimParam$addStructuredSnpChip(nSnpPerChr, structure, force = FALSE)
Arguments:
nSnpPerChr number of SNPs per chromosome. Can be a single value or nChr values.
structure a matrix. Rows are snp chips, columns are chips. If value is true then that snp is on
that chip.
force should the check for a running simulation be ignored. Only set to TRUE if you know
what you are doing.

Method addTraitA(): Randomly assigns eligble QTLs for one or more additive traits. If
simulating more than one trait, all traits will be pleiotrophic with correlated additive effects.

Usage:
SimParam$addTraitA(
nQtlPerChr,
mean = 0,
var = 1,
corA = NULL,
gamma = FALSE,
shape = 1,
force = FALSE
)
Arguments:

nQt1lPerChr number of QTLs per chromosome. Can be a single value or nChr values.

mean a vector of desired mean genetic values for one or more traits

var a vector of desired genetic variances for one or more traits

corA amatrix of correlations between additive effects

gamma should a gamma distribution be used instead of normal

shape the shape parameter for the gamma distribution

force should the check for a running simulation be ignored. Only set to TRUE if you know
what you are doing.

84

SimParam

Examples:

#Create founder haplotypes
founderPop = quickHaplo(nInd=10, nChr=1, segSites=10)

#Set simulation parameters
SP = SimParam$new(founderPop)
SP$addTraitA(10)

Method addTraitAD(): Randomly assigns eligble QTLs for one or more traits with dominance.
If simulating more than one trait, all traits will be pleiotrophic with correlated effects.

Usage:
SimParam$addTraitAD(

nQtlPerChr,

mean = 0,

var = 1,

meanDD = 0,

varDD = 0,

corA = NULL,

corDD = NULL,

useVarA = TRUE,
gamma = FALSE,
shape 1,
force = FALSE

)

Arguments:

nQt1lPerChr number of QTLs per chromosome. Can be a single value or nChr values.
mean a vector of desired mean genetic values for one or more traits

var a vector of desired genetic variances for one or more traits

meanDD mean dominance degree

varDD variance of dominance degree

corA a matrix of correlations between additive effects

corDD a matrix of correlations between dominance degrees

useVarA tune according to additive genetic variance if true. If FALSE, tuning is performed
according to total genetic variance.

gamma should a gamma distribution be used instead of normal

shape the shape parameter for the gamma distribution

force should the check for a running simulation be ignored. Only set to TRUE if you know
what you are doing.

Examples:

#Create founder haplotypes
founderPop = quickHaplo(nInd=10, nChr=1, segSites=10)

#Set simulation parameters
SP = SimParam$new(founderPop)
SP$addTraitAD(1@, meanDD=0.5)

SimParam 85

Method addTraitAG(): Randomly assigns eligble QTLs for one ore more additive GxXE traits.
If simulating more than one trait, all traits will be pleiotrophic with correlated effects.
Usage:
SimParam$addTraitAG(
nQtlPerChr,
mean = 0,
var = 1,
varGxE = 1e-06,
varEnv = 0,
corA = NULL,
corGxE = NULL,
gamma = FALSE,
shape = 1,
force = FALSE
)

Arguments:

nQt1PerChr number of QTLs per chromosome. Can be a single value or nChr values.

mean a vector of desired mean genetic values for one or more traits

var a vector of desired genetic variances for one or more traits

varGxE a vector of total genotype-by-environment variances for the traits

varEnv a vector of environmental variances for one or more traits

corA a matrix of correlations between additive effects

corGxE a matrix of correlations between GxE effects

gamma should a gamma distribution be used instead of normal

shape the shape parameter for the gamma distribution

force should the check for a running simulation be ignored. Only set to TRUE if you know
what you are doing.

Examples:

#Create founder haplotypes
founderPop = quickHaplo(nInd=10, nChr=1, segSites=10)

#Set simulation parameters
SP = SimParam$new(founderPop)

SP$addTraitAG(10, varGxE=2)

Method addTraitADG(): Randomly assigns eligble QTLs for a trait with dominance and GxE.

Usage:
SimParam$addTraitADG(
nQtlPerChr,
mean = 0,
var = 1,
varEnv = 1e-06,
varGxE = l1e-06,
meanDD = 0,

varDD = @,

86

SimParam

corA = NULL,
corDD = NULL,
corGxE = NULL,
useVarA = TRUE,
gamma = FALSE,
shape = 1,
force = FALSE

)

Arguments:

nQt1PerChr number of QTLs per chromosome. Can be a single value or nChr values.

mean a vector of desired mean genetic values for one or more traits

var a vector of desired genetic variances for one or more traits

varEnv a vector of environmental variances for one or more traits

varGxE a vector of total genotype-by-environment variances for the traits

meanDD mean dominance degree

varDD variance of dominance degree

corA a matrix of correlations between additive effects

corDD a matrix of correlations between dominance degrees

corGxE a matrix of correlations between GxE effects

useVarA tune according to additive genetic variance if true

gamma should a gamma distribution be used instead of normal

shape the shape parameter for the gamma distribution

force should the check for a running simulation be ignored. Only set to TRUE if you know
what you are doing.

Examples:

#Create founder haplotypes
founderPop = quickHaplo(nInd=10, nChr=1, segSites=10)

#Set simulation parameters
SP = SimParam$new(founderPop)
SP$addTraitADG(10, meanDD=0.5, varGxE=2)

Method addTraitAE(): Randomly assigns eligble QTLs for one or more additive and epistasis
traits. If simulating more than one trait, all traits will be pleiotrophic with correlated additive
effects.

Usage:
SimParam$addTraitAE(

nQt1PerChr,

mean = 0,

var = 1,

relAA = 0,

corA = NULL,

corAA = NULL,

useVarA = TRUE,
gamma = FALSE,

SimParam 87

shape =
force = FALSE

|
—

)

Arguments:

nQt1lPerChr number of QTLs per chromosome. Can be a single value or nChr values.

mean a vector of desired mean genetic values for one or more traits

var a vector of desired genetic variances for one or more traits

relAA the relative value of additive-by-additive variance compared to additive variance in a
diploid organism with allele frequency 0.5

corA a matrix of correlations between additive effects

corAA a matrix of correlations between additive-by-additive effects

useVarA tune according to additive genetic variance if true. If FALSE, tuning is performed
according to total genetic variance.

gamma should a gamma distribution be used instead of normal

shape the shape parameter for the gamma distribution

force should the check for a running simulation be ignored. Only set to TRUE if you know
what you are doing.

Examples:

#Create founder haplotypes
founderPop = quickHaplo(nInd=10, nChr=1, segSites=10)

Method addTraitADE(): Randomly assigns eligble QTLs for one or more traits with dominance
and epistasis. If simulating more than one trait, all traits will be pleiotrophic with correlated

effects.

Usage:

SimParam$addTraitADE (
nQtlPerChr,
mean = 0,
var = 1,
meanDD = 0,
varDD = 0,
relAA = 0,
corA = NULL,
corDD = NULL,
corAA = NULL,

useVarA = TRUE,
gamma = FALSE,
shape = 1,
force = FALSE

)

Arguments:

nQt1PerChr number of QTLs per chromosome. Can be a single value or nChr values.
mean a vector of desired mean genetic values for one or more traits

var a vector of desired genetic variances for one or more traits

meanDD mean dominance degree

88

SimParam

varDD variance of dominance degree

relAA the relative value of additive-by-additive variance compared to additive variance in a
diploid organism with allele frequency 0.5

corA a matrix of correlations between additive effects
corDD a matrix of correlations between dominance degrees
corAA a matrix of correlations between additive-by-additive effects

useVarA tune according to additive genetic variance if true. If FALSE, tuning is performed
according to total genetic variance.

gamma should a gamma distribution be used instead of normal

shape the shape parameter for the gamma distribution

force should the check for a running simulation be ignored. Only set to TRUE if you know
what you are doing.

Examples:

#Create founder haplotypes
founderPop = quickHaplo(nInd=10, nChr=1, segSites=10)

#Set simulation parameters
SP = SimParam$new(founderPop)
SP$addTraitADE (10)

Method addTraitAEG(): Randomly assigns eligble QTLs for one or more additive and epistasis
GxE traits. If simulating more than one trait, all traits will be pleiotrophic with correlated effects.

Usage:
SimParam$addTraitAEG(
nQtlPerChr,
mean = 0,
var = 1,
relAA = 0,
varGxE = 1e-06,
varEnv = 0,
corA = NULL,
corAA = NULL,

corGxE = NULL,
useVarA = TRUE,
gamma = FALSE,
shape = 1,
force = FALSE

)

Arguments:

nQt1lPerChr number of QTLs per chromosome. Can be a single value or nChr values.
mean a vector of desired mean genetic values for one or more traits

var a vector of desired genetic variances for one or more traits

relAA the relative value of additive-by-additive variance compared to additive variance in a
diploid organism with allele frequency 0.5

varGxE a vector of total genotype-by-environment variances for the traits

SimParam 89

varEnv a vector of environmental variances for one or more traits
corA a matrix of correlations between additive effects

corAA a matrix of correlations between additive-by-additive effects
corGxE a matrix of correlations between GXE effects

useVarA tune according to additive genetic variance if true. If FALSE, tuning is performed
according to total genetic variance.

gamma should a gamma distribution be used instead of normal

shape the shape parameter for the gamma distribution

force should the check for a running simulation be ignored. Only set to TRUE if you know
what you are doing.

Examples:

#Create founder haplotypes
founderPop = quickHaplo(nInd=10, nChr=1, segSites=10)

#Set simulation parameters
SP = SimParam$new(founderPop)

SP$addTraitAEG(10, varGxE=2)

Method addTraitADEG(): Randomly assigns eligble QTLs for a trait with dominance, epistasis

and GxE.

Usage:

SimParam$addTraitADEG(
nQtlPerChr,
mean = 0,
var = 1,
varEnv = 1e-06,
varGxE = 1e-06,
meanDD = @,
varDD = 0,
relAA = 0,
corA = NULL,
corDD = NULL,
corAA = NULL,
corGxE = NULL,
useVarA = TRUE,
gamma = FALSE,
shape = 1,
force = FALSE

)

Arguments:

nQt1PerChr number of QTLs per chromosome. Can be a single value or nChr values.
mean a vector of desired mean genetic values for one or more traits

var a vector of desired genetic variances for one or more traits

varEnv a vector of environmental variances for one or more traits

varGxE a vector of total genotype-by-environment variances for the traits

SimParam

meanDD mean dominance degree
varDD variance of dominance degree

relAA the relative value of additive-by-additive variance compared to additive variance in a
diploid organism with allele frequency 0.5

corA a matrix of correlations between additive effects

corDD a matrix of correlations between dominance degrees

corAA a matrix of correlations between additive-by-additive effects

corGxE a matrix of correlations between GxE effects

useVarA tune according to additive genetic variance if true

gamma should a gamma distribution be used instead of normal

shape the shape parameter for the gamma distribution

force should the check for a running simulation be ignored. Only set to TRUE if you know
what you are doing.

Examples:

#Create founder haplotypes
founderPop = quickHaplo(nInd=10, nChr=1, segSites=10)

#Set simulation parameters
SP = SimParam$new(founderPop)
SP$addTraitADEG(1@0, meanDD=0.5, varGxE=2)

Method manAddTrait(): Manually add a new trait to the simulation.

Usage:
SimParam$manAddTrait(
lociMap,
varA = NA_real_,
varG = NA_real_,
varE = NA_real_,
force = FALSE

)

Arguments:

lociMap a new object descended from LociMap-class
varA the value for varA in the base population, optional
varG the value for varG in the base population, optional
vark default error variance for phenotype, optional

force should the check for a running simulation be ignored. Only set to TRUE if you know
what you are doing

Method switchTrait(): Switch a trait in the simulation.
Usage:
SimParam$switchTrait(
traitPos,
lociMap,
varA = NA_real_,
varG = NA_real_,

SimParam 91

varE = NA_real_,

force = FALSE
)
Arguments:
traitPos an integer indicate which trait to switch
lociMap a new object descended from LociMap-class
varA the value for varA in the base population, optional
varG the value for varG in the base population, optional
varkE default error variance for phenotype, optional
force should the check for a running simulation be ignored. Only set to TRUE if you know

what you are doing

Method removeTrait(): Remove a trait from the simulation
Usage:
SimParam$removeTrait(traits, force = FALSE)
Arguments:
traits an integer vector indicating which traits to remove

force should the check for a running simulation be ignored. Only set to TRUE if you know
what you are doing

Method setVarkE(): Defines a default value for error variances in the simulation.
Usage:
SimParam$setVarE(h2 = NULL, H2 = NULL, varE = NULL)
Arguments:
h2 a vector of desired narrow-sense heritabilities
H2 a vector of desired broad-sense heritabilities
varE a vector of error variances

Examples:

#Create founder haplotypes
founderPop = quickHaplo(nInd=10, nChr=1, segSites=10)

#Set simulation parameters
SP = SimParam$new(founderPop)
SP$addTraitA(10)
SP$setVarkE(h2=0.5)

Method setCorE(): Defines a correlation structure for default error variances. You must call
setVartE first to define the default error variances.

Usage:
SimParam$setCorE(corE)

Arguments:

corE a correlation matrix for the error variances

Examples:

92

SimParam

#Create founder haplotypes
founderPop = quickHaplo(nInd=10, nChr=1, segSites=10)

#Set simulation parameters

SP = SimParam$new(founderPop)

SP$addTraitA(10, mean=c(@,0), var=c(1,1), corA=diag(2))
SP$setVarkE(varE=c(1,1))

E = 0.5%diag(2)+0.5 #Positively correlated error
SP$setCorE(E)

Method rescaleTraits(): Linearly scales all traits to achieve desired values of means and
variances in the founder population.
Usage:
SimParam$rescaleTraits(
mean = 0,
var = 1,
varEnv = 0,
varGxE = 1e-06,
useVarA = TRUE
)
Arguments:
mean a vector of new trait means
var a vector of new trait variances
varEnv a vector of new environmental variances
varGxE a vector of new GxE variances
useVarA tune according to additive genetic variance if true

Examples:

#Create founder haplotypes
founderPop = quickHaplo(nInd=10, nChr=1, segSites=10)

#Set simulation parameters
SP = SimParam$new(founderPop)
SP$addTraitA(10)

#Create population
pop = newPop(founderPop, simParam=SP)
meanG(pop)

#Change mean to 1
SP$rescaleTraits(mean=1)

#Run resetPop for change to take effect
pop = resetPop(pop, simParam=SP)

meanG (pop)

Method setRecombRatio(): Set the relative recombination rates between males and females.
This allows for gender specific recombination rates, under the assumption of equivalent recombi-
nation landscapes.

SimParam 93

Usage:
SimParam$setRecombRatio(femaleRatio)

Arguments:

femaleRatio relative ratio of recombination in females compared to males. A value of 2 indi-
cate twice as much recombination in females. The value must be greater than 0. (default is

1)
Examples:

#Create founder haplotypes
founderPop = quickHaplo(nInd=10, nChr=1, segSites=10)

#Set simulation parameters
SP = SimParam$new(founderPop)
SP$setRecombRatio(2) #Twice as much recombination in females

Method switchGenMap(): Replaces existing genetic map.

Usage:
SimParam$switchGenMap(genMap, centromere = NULL)

Arguments:

genMap a list of length nChr containing numeric vectors for the position of each segregating
site on a chromosome.

centromere a numeric vector of centromere positions. If NULL, the centromere are assumed
to be metacentric.

Method switchFemaleMap(): Replaces existing female genetic map.

Usage:
SimParam$switchFemaleMap(genMap, centromere = NULL)

Arguments:

genMap a list of length nChr containing numeric vectors for the position of each segregating
site on a chromosome.

centromere a numeric vector of centromere positions. If NULL, the centromere are assumed
to be metacentric.

Method switchMaleMap(): Replaces existing male genetic map.

Usage:
SimParam$switchMaleMap(genMap, centromere = NULL)

Arguments:

genMap a list of length nChr containing numeric vectors for the position of each segregating
site on a chromosome.

centromere a numeric vector of centromere positions. If NULL, the centromere are assumed
to be metacentric.

Method addToRec(): For internal use only.

Usage:
SimParam$addToRec (hist)

94 SimParam

Arguments:

hist new recombination history

Method updateLastId(): For internal use only.
Usage:
SimParam$updatelLastId(lastId)
Arguments:
lastId last ID assigned

Method addToPed(): For internal use only.
Usage:
SimParam$addToPed(lastId, mother, father, isDH)
Arguments:
lastId ID of last individual
mother vector of mother IDs
father vector of father IDs
isDH vector of DH indicators

Method clone(): The objects of this class are cloneable with this method.
Usage:
SimParam$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.

Note

By default the founder population is the population used to initalize the SimParam object. This pop-
ulation can be changed by replacing the population in the founderPop slot. You must run resetPop
on any existing populations to obtain the new trait values.

Examples

o
Method ‘SimParam$new®
B o

#Create founder haplotypes
founderPop = quickHaplo(nInd=1@, nChr=1, segSites=10)

#Set simulation parameters
SP = SimParam$new(founderPop)

B oo
Method ‘SimParam$setTrackPed*
B o

SimParam 95

#Create founder haplotypes
founderPop = quickHaplo(nInd=10, nChr=1, segSites=10)

#Set simulation parameters
SP = SimParam$new(founderPop)
SP$setTrackPed(TRUE)

B oo
Method ‘SimParam$setTrackRec"
H m o

#Create founder haplotypes
founderPop = quickHaplo(nInd=1@, nChr=1, segSites=10)

#Set simulation parameters
SP = SimParam$new(founderPop)
SP$setTrackRec(TRUE)

oo
Method ‘SimParam$resetPed*
B oo

#Create founder haplotypes
founderPop = quickHaplo(nInd=1@, nChr=1, segSites=10)

#Set simulation parameters
SP = SimParam$new(founderPop)

#Create population
pop = newPop(founderPop, simParam=SP)
pop@id # 1:10

#Create another population after reseting pedigree
SP$resetPed()

pop2 = newPop(founderPop, simParam=SP)

pop2@id # 1:10

B m oo
Method ‘SimParam$restrSegSites®
Y m o m

#Create founder haplotypes
founderPop = quickHaplo(nInd=1@, nChr=1, segSites=10)

#Set simulation parameters
SP = SimParam$new(founderPop)
SP$restrSegSites(minQtlPerChr=5, minSnpPerChr=5)

e
Method ‘SimParam$setGender®
B oo

#Create founder haplotypes

96

SimParam

founderPop = quickHaplo(nInd=1@, nChr=1, segSites=10)

#Set simulation parameters
SP = SimParam$new(founderPop)
SP$setGender ("yes_sys")

H m o
Method ‘SimParam$addSnpChip*
B m o

#Create founder haplotypes
founderPop = quickHaplo(nInd=10, nChr=1, segSites=10)

#Set simulation parameters
SP = SimParam$new(founderPop)
SP$addSnpChip(10)

oo
Method ‘SimParam$addTraitA®
e L P e

#Create founder haplotypes
founderPop = quickHaplo(nInd=10, nChr=1, segSites=10)

#Set simulation parameters
SP = SimParam$new(founderPop)
SP$addTraitA(10)

o
Method ‘SimParam$addTraitAD®
H m o

#Create founder haplotypes
founderPop = quickHaplo(nInd=1@, nChr=1, segSites=10)

#Set simulation parameters
SP = SimParam$new(founderPop)
SP$addTraitAD(1@, meanDD=0.5)

B o
Method ‘SimParam$addTraitAG*
B oo

#Create founder haplotypes
founderPop = quickHaplo(nInd=1@, nChr=1, segSites=10)

#Set simulation parameters
SP = SimParam$new(founderPop)
SP$addTraitAG(10, varGxE=2)

B mm
Method ‘SimParam$addTraitADG"
B o

SimParam 97

#Create founder haplotypes
founderPop = quickHaplo(nInd=10, nChr=1, segSites=10)

#Set simulation parameters
SP = SimParam$new(founderPop)
SP$addTraitADG(10, meanDD=0.5, varGxE=2)

B oo
Method ‘SimParam$addTraitAE"*
o

#Create founder haplotypes
founderPop = quickHaplo(nInd=10, nChr=1, segSites=10)

H m o
Method ‘SimParam$addTraitADE"
e e e

#Create founder haplotypes
founderPop = quickHaplo(nInd=1@, nChr=1, segSites=10)

#Set simulation parameters
SP = SimParam$new(founderPop)
SP$addTraitADE(10)

B oo
Method ‘SimParam$addTraitAEG*
HHE m

#Create founder haplotypes
founderPop = quickHaplo(nInd=10, nChr=1, segSites=10)

#Set simulation parameters
SP = SimParam$new(founderPop)
SP$addTraitAEG(10, varGxE=2)

B m oo
Method ‘SimParam$addTraitADEG®
oo

#Create founder haplotypes
founderPop = quickHaplo(nInd=1@, nChr=1, segSites=10)

#Set simulation parameters
SP = SimParam$new(founderPop)
SP$addTraitADEG(10, meanDD=0.5, varGxE=2)

o
Method ‘SimParam$setVark®
oo

#Create founder haplotypes

98

SimParam

founderPop = quickHaplo(nInd=1@, nChr=1, segSites=10)

#Set simulation parameters
SP = SimParam$new(founderPop)
SP$addTraitA(10)
SP$setVarE(h2=0.5)

B oo
Method ‘SimParam$setCorE"
H m o

#Create founder haplotypes
founderPop = quickHaplo(nInd=1@, nChr=1, segSites=10)

#Set simulation parameters

SP = SimParam$new(founderPop)

SP$addTraitA(10, mean=c(0,0), var=c(1,1), corA=diag(2))
SP$setVarE(varE=c(1,1))

E = 0.5*diag(2)+0.5 #Positively correlated error
SP$setCorE(E)

H m o
Method ‘SimParam$rescaleTraits®
B m o

#Create founder haplotypes
founderPop = quickHaplo(nInd=1@, nChr=1, segSites=10)

#Set simulation parameters
SP = SimParam$new(founderPop)
SP$addTraitA(10)

#Create population
pop = newPop(founderPop, simParam=SP)
meanG(pop)

#Change mean to 1
SP$rescaleTraits(mean=1)

#Run resetPop for change to take effect
pop = resetPop(pop, simParam=SP)
meanG(pop)

oo
Method ‘SimParam$setRecombRatio*
H m o

#Create founder haplotypes
founderPop = quickHaplo(nInd=1@, nChr=1, segSites=10)

#Set simulation parameters
SP = SimParam$new(founderPop)
SP$setRecombRatio(2) #Twice as much recombination in females

smithHazel 99

smithHazel Calculate Smith-Hazel weights

Description
Calculates weights for Smith-Hazel index given economice weights and phenotypic and genotypic
variance-covariance matrices.

Usage

smithHazel (econWt, varG, varP)

Arguments
econWt vector of economic weights
varG the genetic variance-covariance matrix
varP the phenotypic variance-covariance matrix
Value

a vector of weight for calculating index values

Examples
G = 1.5%diag(2)-0.5
E = diag(2)
P = G+E
wt = c(1,1)

smithHazel(wt, G, P)

TraitA-class Additive trait

Description

Extends LociMap-class to model additive traits

Slots
addEff additive effects

intercept adjustment factor for gv

100 TraitADE-class

TraitA2-class Gender specific additive trait

Description
Extends TraitA-class to model seperate additive effects for parent of origin. Used exclusively for
genomic selection.

Slots
addEffMale additive effects

TraitA2D-class Gender specific additive and dominance trait

Description

Extends TraitA2-class to add dominance

Slots

domEff dominance effects

TraitAD-class Additive and dominance trait

Description

Extends TraitA-class to add dominance

Slots

domEff dominance effects

TraitADE-class Additive, dominance, and epistatic trait

Description

Extends TraitAD-class to add epistasis

Slots

epiEff epistatic effects

TraitADEG-class 101

TraitADEG-class Additive, dominance, epistasis, and GxE trait

Description

Extends TraitADE-class to add GxE effects

Slots

gxeEff GxE effects
gxeInt GxE intercept

envVar Environmental variance

TraitADG-class Additive, dominance and GxE trait

Description

Extends TraitAD-class to add GXE effects

Slots

gxeEff GxE effects
gxeInt GXE intercept

envVar Environmental variance

TraitAE-class Additive and epistatic trait

Description

Extends TraitA-class to add epistasis

Slots

epiEff epistatic effects

102 usefulness

TraitAEG-class Additive, epistasis and GxE trait

Description

Extends TraitAE-class to add GxE effects

Slots

gxeEff GxE effects
gxeInt GxE intercept

envVar Environmental variance

TraitAG-class Additive and GxE trait

Description

Extends TraitA-class to add GxE effects

Slots

gxeEff GxE effects
gxeInt GXxE intercept

envVar Environmental variance

usefulness Usefulness criterion

Description

Calculates the usefulness criterion

Usage

usefulness(
pop,
trait = 1,
use = "gv",
p=2o.1,
selectTop = TRUE,
simParam = NULL,

varA 103

Arguments
pop and object of Pop-class or HybridPop-class
trait the trait for selection. Either a number indicating a single trait or a function
returning a vector of length nlnd.
use select on genetic values (gv, default), estimated breeding values (ebv), breeding
values (bv), or phenotypes (pheno)
p the proportion of individuals selected
selectTop selects highest values if true. Selects lowest values if false.
simParam an object of SimParam
additional arguments if using a function for trait
Value

Returns a numeric value

Examples

#Create founder haplotypes
founderPop = quickHaplo(nInd=2, nChr=1, segSites=10)

#Set simulation parameters
SP = SimParam$new(founderPop)
SP$addTraitA(10)

#Create population
pop = newPop(founderPop, simParam=SP)

#Determine usefulness of population
usefulness(pop, simParam=SP)

#Should be equivalent to GV of best individual
max (gv (pop))

varA Additive variance

Description

Returns additive variance for all traits

Usage

varA(pop, simParam = NULL)

104 varAA

Arguments
pop an object of Pop-class
simParam an object of SimParam
Examples

#Create founder haplotypes
founderPop = quickHaplo(nInd=1@, nChr=1, segSites=10)

#Set simulation parameters
SP = SimParam$new(founderPop)
SP$addTraitAD(1@, meanDD=0.5)
SP$setVarkE(h2=0.5)

#Create population
pop = newPop(founderPop, simParam=SP)
varA(pop, simParam=SP)

varAA Additive-by-additive epistatic variance

Description

Returns additive-by-additive epistatic variance for all traits

Usage
varAA(pop, simParam = NULL)

Arguments
pop an object of Pop-class
simParam an object of SimParam
Examples

#Create founder haplotypes
founderPop = quickHaplo(nInd=1@, nChr=1, segSites=10)

#Set simulation parameters
SP = SimParam$new(founderPop)
SP$addTraitAD(1@, meanDD=0.5)
SP$setVarE(h2=0.5)

#Create population
pop = newPop(founderPop, simParam=SP)
varAA(pop, simParam=SP)

varD 105

varD Dominance variance

Description

Returns dominance variance for all traits

Usage

varD(pop, simParam = NULL)

Arguments
pop an object of Pop-class
simParam an object of SimParam
Examples

#Create founder haplotypes
founderPop = quickHaplo(nInd=1@, nChr=1, segSites=10)

#Set simulation parameters
SP = SimParam$new(founderPop)
SP$addTraitAD(1@, meanDD=0.5)
SP$setVarkE(h2=0.5)

#Create population
pop = newPop(founderPop, simParam=SP)
varD(pop, simParam=SP)

varG Total genetic variance

Description

Returns total genetic variance for all traits

Usage
varG(pop)

Arguments

pop an object of Pop-class or HybridPop-class

106 varP

Examples

#Create founder haplotypes
founderPop = quickHaplo(nInd=10, nChr=1, segSites=10)

#Set simulation parameters
SP = SimParam$new(founderPop)
SP$addTraitA(10)
SP$setVarE(h2=0.5)

#Create population
pop = newPop(founderPop, simParam=SP)
varG(pop)

varP Phenotypic variance

Description

Returns phenotypic variance for all traits

Usage

varP (pop)

Arguments

pop an object of Pop-class or HybridPop-class

Examples

#Create founder haplotypes
founderPop = quickHaplo(nInd=1@, nChr=1, segSites=10)

#Set simulation parameters
SP = SimParam$new(founderPop)
SP$addTraitA(10)
SP$setVarE(h2=0.5)

#Create population
pop = newPop(founderPop, simParam=SP)
varP (pop)

writePlink 107

writePlink Writes a Pop-class as PLINK files

Description

Writes a Pop-class as PLINK PED and MAP files

Usage

writePlink(
pop,
baseName,
trait = 1L,
snpChip = 1L,
simParam = NULL,
chromLength = 10L*8

)

Arguments
pop an object of Pop-class
baseName a character. Basename of PED and MAP files.
trait an integer. Which phenotype trait should be used.
snpChip an integer. Which SNP array should be used.
simParam an object of SimParam
chromLength an integer. The size of chromosomes in base pairs; assuming all chromosomes

are of the same size.

Examples

Not run:

#Create founder haplotypes
founderPop = quickHaplo(nInd=1@, nChr=1, segSites=10)

#Set simulation parameters

SP = SimParam$new(founderPop)
SP$setGender(gender = "yes_rand")
SP$addTraitA(nQtlPerChr = 10)
SP$addSnpChip(nSnpPerChr = 5)

#Create population

pop = newPop(rawPop = founderPop)
pop = setPheno(pop, varE = SP$varA)
writePlink(pop, baseName="test")

#Test
test = read.table(file = "test.ped")

108

#...gender

if (lidentical(x = c("M", "F")[test[[5]]], y = pop@gender)) { stop() }

#...pheno (issues with rounding)

if (lidentical(x = test[[6]], y = pop@phenol, 11)) { stop() }

#...genotypes

x = test[, -(1:6)] -1

x[, 11 =x[, 11 + x[, 2]

x[, 21 = x[, 31 + x[, 4]

x[, 31 = x[, 51 + x[, 6]

x[, 41 = x[, 71 + x[, 8]

x[, 51 = x[, 91 + x[, 10]

y = pullSnpGeno(pop)

if (sum(x[, 1:5] - y) !'=0) { stop() }

End(Not run)

writeRecords

writeRecords Write data records

Description

Saves a population’s phenotypic and marker data to a directory.

Usage
writeRecords(
pop,
dir,
snpChip = 1,

useQtl = FALSE,
includeHaplo = FALSE,
append = TRUE,
simParam = NULL

)
Arguments
pop an object of Pop-class
dir path to a directory for saving output
snpChip which SNP chip genotype to save. If useQtl=TRUE, this value will indicate
which trait’s QTL genotype to save. A value of O will skip writing a snpChip.
useQtl should QTL genotype be written instead of SNP chip genotypes.

includeHaplo should markers be seperated by female and male haplotypes.

append if true, new records are added to any existing records. If false, any existing
records are deleted before writing new records. Note that this will delete all files

in the ’dir’ directory.

simParam an object of SimParam

Index

[,HybridPop-method (HybridPop-class), 20
[,MapPop-method (MapPop-class), 24
[,Pop-method (Pop-class), 33
[,RawPop-method (RawPop-class), 45

aa, 4
AlphaSimR, 5

bv, 5

c,HybridPop-method (HybridPop-class), 20
c,MapPop-method (MapPop-class), 24
c,Pop-method (Pop-class), 33
c,RawPop-method (RawPop-class), 45
calcGCA, 6

cChr, 6

dd, 7
doubleGenome, 8, 23

ebv, 8
editGenome, 9
editGenomeTopQtl, 10

fastRRBLUP, 11

genicVarA, 12
genicVarAA, 13
genicVarD, 14
genicVargG, 14
genParam, 15
getQtlMap, 16
getSnpMap, 17
gv, 18

hybridCross, 19, 80, 81
HybridPop-class, 20

LociMap-class, 21

makeCross, 21, 42

109

makeCross2, 22, 44
makeDH, 19, 23, 77
MapPop-class, 24
meanG, 24
meanP, 25
mergeGenome, 26
mergePops, 27
mutate, 27

newMapPop, 28
newPop, 19, 29, 77
nInd, 30

pedigreeCross, 31
pheno, 32
Pop-class, 33
popVar, 34
pullIbdHaplo, 35
pullQtlGeno, 36
pullQtlHaplo, 37

pullSegSiteGeno, 38
pullSegSiteHaplo, 39

pullSnpGeno, 40
pullSnpHaplo, 41

quickHaplo, 42

randCross, 42, 65
randCross2, 44
RawPop-class, 45

reduceGenome, 23, 46

resetPop, 47, 94

RRBLUP, 11,48, 49-51

RRBLUP2, /1, 49
RRBLUP_D, 52, 53
RRBLUP_D2, 53

RRBLUP_GCA, 51, 55, 56, 58

RRBLUP_GCA2, 56

RRBLUP_SCA, 51, 58, 59

RRBLUP_SCA2, 59

110

RRBLUPMemUse, 51
RRsol-class, 61
runMacs, 29, 61, 62, 63
runMacs2, 62

sampleHaplo, 64

selectCross, 65

selectFam, 66

selectInd, 65, 68, 73

selectOP, 69

selectWithinFam, 70

self, 72

sellndex, 73

sellnt, 74

setEBVY, 27, 74

setPheno, 27,75

setPhenoGCA, 77

show, Pop-method (Pop-class), 33

show, RawPop-method (RawPop-class), 45

SimParam, 4, 5,7, 9, 10, 12-15,17, 19, 21, 22,
24, 26, 28, 30, 35-37, 3941, 43, 44,
47, 48, 50, 52, 54, 55, 57, 58, 60, 65,
67, 68, 70-72,75-77,7178, 103—105,
107, 108

smithHazel, 99

TraitA-class, 99
TraitA2-class, 100
TraitA2D-class, 100
TraitAD-class, 100
TraitADE-class, 100
TraitADEG-class, 101
TraitADG-class, 101
TraitAE-class, 101
TraitAEG-class, 102
TraitAG-class, 102

usefulness, 102

var, 34
varA, 103
varAA, 104
varD, 105
varG, 105
varP, 106

writePlink, 107
writeRecords, 108

INDEX

	aa
	AlphaSimR
	bv
	calcGCA
	cChr
	dd
	doubleGenome
	ebv
	editGenome
	editGenomeTopQtl
	fastRRBLUP
	genicVarA
	genicVarAA
	genicVarD
	genicVarG
	genParam
	getQtlMap
	getSnpMap
	gv
	hybridCross
	HybridPop-class
	LociMap-class
	makeCross
	makeCross2
	makeDH
	MapPop-class
	meanG
	meanP
	mergeGenome
	mergePops
	mutate
	newMapPop
	newPop
	nInd
	pedigreeCross
	pheno
	Pop-class
	popVar
	pullIbdHaplo
	pullQtlGeno
	pullQtlHaplo
	pullSegSiteGeno
	pullSegSiteHaplo
	pullSnpGeno
	pullSnpHaplo
	quickHaplo
	randCross
	randCross2
	RawPop-class
	reduceGenome
	resetPop
	RRBLUP
	RRBLUP2
	RRBLUPMemUse
	RRBLUP_D
	RRBLUP_D2
	RRBLUP_GCA
	RRBLUP_GCA2
	RRBLUP_SCA
	RRBLUP_SCA2
	RRsol-class
	runMacs
	runMacs2
	sampleHaplo
	selectCross
	selectFam
	selectInd
	selectOP
	selectWithinFam
	self
	selIndex
	selInt
	setEBV
	setPheno
	setPhenoGCA
	SimParam
	smithHazel
	TraitA-class
	TraitA2-class
	TraitA2D-class
	TraitAD-class
	TraitADE-class
	TraitADEG-class
	TraitADG-class
	TraitAE-class
	TraitAEG-class
	TraitAG-class
	usefulness
	varA
	varAA
	varD
	varG
	varP
	writePlink
	writeRecords
	Index

