Package 'AbsFilterGSEA'

September 21, 2017

Type Package

Title Improved False Positive Control of Gene-Permuting GSEA with Absolute Filtering

Version 1.5.1

Author Sora Yoon <yoonsora@unist.ac.kr>

Maintainer Sora Yoon <yoonsora@unist.ac.kr>

Description Gene-set enrichment analysis (GSEA) is popularly used to assess the enrichment of differential signal in a pre-defined gene-set without using a cutoff threshold for differential expression. The significance of enrichment is evaluated through sample- or genepermutation method. Although the sample-permutation approach is highly recommended due to its good false positive control, we must use gene-permuting method if the number of samples is small. However, such gene-permuting GSEA (or preranked GSEA) generates a lot of false positive gene-sets as the inter-gene correlation in each gene set increases. These false positives can be successfully reduced by filtering with the one-tailed absolute GSEA results. This package provides a function that performs gene-permuting GSEA calculation with or without the absolute filtering. Without filtering, users can perform (original) twotailed or one-tailed absolute GSEA.

License GPL-2

LazyData TRUE

RoxygenNote 6.0.1

Depends

LinkingTo Rcpp, RcppArmadillo

Imports Rcpp, Biobase, stats, DESeq, limma

NeedsCompilation yes

Repository CRAN

Date/Publication 2017-09-21 13:39:52 UTC

R topics documented:

example			 •			•					•				•	 •		•		•	•	•		•			2	2
GenePermGSEA	•		 •	•	•	•	•	•	•	•	•		•	•	•	 •	•	•	•	•	•	•	•	•	•	•	3	

example

Index

example

Description

This is toy example of RNA-seq raw read count table. It containes 5000 genes and 6 samples (three for case and other three for control group).

Usage

data("example")

Format

A data frame with 5000 observations on the following 6 variables.

groupA1 a numeric vector for RNA-seq counts for case samples 1.

groupA2 a numeric vector for RNA-seq counts for case samples 2.

groupA3 a numeric vector for RNA-seq counts for case samples 3.

groupB1 a numeric vector for RNA-seq counts for control samples 1.

groupB2 a numeric vector for RNA-seq counts for control samples 2.

groupB3 a numeric vector for RNA-seq counts for control samples 3.

Details

This read count dataset was simulated based on the negative binomial distribution. Mean and dispersion parameters were assessed from TCGA KIRC RNA-seq dataset. Normalization was done by using edgeR package.Geneset_41~45 are up-regulated and Geneset_46~50 are down-regulated gene sets.

Source

Cancer Genome Atlas Research, N. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature 2013;499(7456):43-49.

References

Chen, Y., et al. edgeR: differential expression analysis of digital gene expression data User's Guide. 2015.

Examples

data(example)

6

GenePermGSEA

Description

Gene-set enrichment analysis (GSEA) is popularly used to assess the enrichment of differential signal in a pre-defined gene-set without using a cutoff threshold for differential expression. The significance of enrichment is evaluated through sample- or gene-permutation method. Although the sample-permutation approach is highly recommended due to its good false positive control, we must use gene-permuting method if the number of samples is small. However, such gene-permuting GSEA (or preranked GSEA) generates a lot of false positive gene-sets as the inter-gene correlation in each gene set increases. These false positives can be successfully reduced by filtering with the one-tailed absolute GSEA results. This package provides a function that performs gene-permuting GSEA calculation with or without the absolute filtering. Without filtering, users can perform (original) two-tailed or one-tailed absolute GSEA.

Usage

```
GenePermGSEA(countMatrix, GeneScoreType, idxCase, idxControl, GenesetFile,
normalization, minGenesetSize = 10, maxGenesetSize = 300, q = 1,
nPerm = 1000, absoluteGeneScore = FALSE, GSEAtype = "absFilter",
FDR = 0.05, FDRfilter = 0.05, minCount = 3)
```

Arguments

countMatrix	Normalized RNA-seq read count matrix.
GeneScoreType	Type of gene score. Possible gene score is "moderated_t","SNR", "FC" (log fold change score) or "RANKSUM" (zero centered).
idxCase	Indices for case samples in the count matrix. e.g., 1:3
idxControl	Indices for control samples in the count matrix. e.g., 4:6
GenesetFile	File path for gene set file. Typical GMT file or its similar 'tab-delimited' file is available. e.g., "C:/geneset.gmt"
normalization	Type 'DESeq' if the input matrix is composed of raw read counts. It will nor- malize the raw count data using DESeq method. Or type 'AlreadyNormalized' if the input matrix is already normalized.
minGenesetSize	Minimum size of gene set allowed. Gene-sets of which sizes are below this value are filtered out from the analysis. Default = 10
maxGenesetSize	Maximum size of gene set allowed. Gene-sets of which sizes are larger this value are filtered out from the analysis. Default = 300
q	Weight exponent for gene score. For example, if $q=0$, only rank of gene score is reflected in calculating gene set score (preranked GSEA). If $q=1$, the gene score itself is used. If $q=2$, square of the gene score is used.
nPerm	The number of gene permutation. Default = 1000 .

4

re
Boolean. Whether to take absolue to gene score (TRUE) or not (FALSE).
Type of GSEA. Possible value is "absolute", "original" or "absFilter". "absolute" for one-tailed absolute GSEA. "original" for the original two-tailed GSEA. "absFilter" for the original GSEA filtered by the results from the one-tailed absolute GSEA.
FDR cutoff for the original or absolute GSEA. Default = 0.05
FDR cutoff for the one-tailed absolute GSEA for absolute filtering (only working when GSEAtype is "absFilter"). Default = 0.05
Minimum median count of a gene to be included in the analysis. It is used for gene-filtering to avoid genes having small read counts. Default = 0

Details

Typical usages are GenePermGSEA(countMatrix = countMatrix, GeneScoreType = "moderated_t", idxCase = 1:3, idxControl = 4:6, GenesetFile = 'geneset.txt', GSEAtype = "absFilter")

Value

GSEA result table sorted by FDR Q-value.

Source

Nam, D. Effect of the absolute statistic on gene-sampling gene-set analysis methods. Stat Methods Med Res 2015. Subramanian, A., et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. P Natl Acad Sci USA 2005;102(43):15545-15550. Li, J. and Tibshirani, R. Finding consistent patterns: A nonparametric approach for identifying differential expression in RNA-Seq data. Statistical Methods in Medical Research 2013;22(5):519-536.

References

Nam, D. Effect of the absolute statistic on gene-sampling gene-set analysis methods. Stat Methods Med Res 2015. Subramanian, A., et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. P Natl Acad Sci USA 2005;102(43):15545-15550. Li, J. and Tibshirani, R. Finding consistent patterns: A nonparametric approach for identifying differential expression in RNA-Seq data. Statistical Methods in Medical Research 2013;22(5):519-536. Simon Anders and Wolfgang Huber (2010): Differential expression analysis for sequence count data. Genome Biology 11:R106

Examples

```
data(example)
```

- # Create a gene set file and save it to your local directory.
- # Note that you can use your local gene set file (tab-delimited like *.gmt file from mSigDB).
- # But here, we will generate a toy gene set file to show the structure of this gene set file.
- # It consists of 50 gene sets and each contains 100 genes.

GenePermGSEA

Index

*Topic **datasets** example, 2

example, 2

GenePermGSEA, 3