Package 'AROC'

December 5, 2019
Type PackageTitle Covariate-Adjusted Receiver Operating Characteristic CurveInference
Version 1.0-2
Date 2019-12-05
Imports stats, grDevices, graphics, splines, np, Matrix, Hmisc, MASS,moments, nor1mix, spatstat
Description Estimates the covariate-adjusted Receiver Operating Characteris-tic (AROC) curve and pooled (unadjusted) ROC curve by different methods. Inacio de Car-valho, V., and Rodriguez-Alvarez, M. X. (2018) arXiv:1806.00473.
License GPL
NeedsCompilation no
Author Maria Xose Rodriguez-Alvarez [aut, cre](https://orcid.org/0000-0002-1329-9238),Vanda Inacio de Carvalho [aut]
(https://orcid.org/0000-0001-8084-1616)
Maintainer Maria Xose Rodriguez-Alvarez mxrodriguez@bcamath.org
Repository CRAN
Date/Publication 2019-12-05 18:10:02 UTC
R topics documented:
AROC-package 2
AROC.bnp 3
AROC.bsp 6
AROC.kernel 9
AROC.sp 11
compute.threshold.AROC.bnp 13
compute.threshold.AROC.bsp 15
compute.threshold.AROC.kernel 17
compute.threshold.AROC.sp 19
compute.threshold.pooledROC.BB 20
compute.threshold.pooledROC.emp 21
paauccontrol 23
plot.AROC 24
pooledROC.BB 25
pooledROC.emp 26
predictive.checks.AROC.bnp 27
predictive.checks.AROC.bsp 29
print.AROC 30
psa 31
summary.AROC 33
Index 34
AROC-package Covariate-Adjusted Receiver Operating Characteristic Curve Infer-
ence

Description

Estimates the covariate-adjusted Receiver Operating Characteristic (AROC) curve and pooled (unadjusted) ROC curve by different methods.

Details

Package:	AROC
Type:	Package
Version:	$1.0-2$
Date:	$2019-12-05$
License:	GPL

Author(s)

Maria Xose Rodriguez-Alvarez and Vanda Inacio de Carvalho.
Maintainer: Maria Xose Rodriguez-Alvarez <mxrodriguez@ bcamath.org>

References

Janes, H., and Pepe, M.S. (2009). Adjusting for covariate effects on classification accuracy using the covariate-adjusted receiver operating characteristic curve. Biometrika, 96(2), 371-382.
Inacio de Carvalho, V., and Rodriguez-Alvarez, M. X. (2018). Bayesian nonparametric inference for the covariate-adjusted ROC curve. arXiv preprint arXiv:1806.00473.
Rodriguez-Alvarez, M. X., Roca-Pardinas, J., and Cadarso-Suarez, C. (2011). ROC curve and covariates: extending induced methodology to the non-parametric framework. Statistics and Computing, 21(4), 483-499.

Nonparametric Bayesian inference of the covariate-adjusted ROC curve (AROC).

Description

Estimates the covariate-adjusted ROC curve (AROC) using the nonparametric Bayesian approach proposed by Inacio de Carvalho and Rodriguez-Alvarez (2018).

Usage

AROC.bnp(formula.healthy, group, tag.healthy, data, scale = TRUE, p = seq(0, 1, l = 101), paauc = paauccontrol(), compute.lpml = FALSE, compute. WAIC = FALSE, m0, S0, nu, Psi, alpha = 1, a = 2, b = 0.5, L = 10, nsim = 10000, nburn = 2000)

Arguments

formula.healthy
A formula object specifying the B-splines dependent Dirichlet process mixture model for the estimation of the conditional distribution function for the diagnostic test outcome in the healthy population (see Note).
group A character string with the name of the variable that distinguishes healthy from diseased individuals.
tag.healthy The value codifying the healthy individuals in the variable group.
data Data frame representing the data and containing all needed variables.
scale A logical value. If TRUE the test outcomes are scaled, i.e., are divided by the standard deviation. The default is TRUE.
$\mathrm{p} \quad$ Set of false positive fractions (FPF) at which to estimate the covariate-adjusted ROC curve.
paauc A list of control values to replace the default values returned by the function paauccontrol. This argument is used to indicate whether the partial area under the covariate-adjusted ROC curve (pAAUC) should be computed and at which FPF.
compute. lpml A logical value. If TRUE, the log pseudo marginal likelihood (LPML, Geisser and Eddy, 1979) and the conditional predictive ordinates (CPO) are computed.
compute.WAIC A logical value. If TRUE, the widely applicable information criterion (WAIC, Gelman et al., 2014; Watanabe, 2010) is computed.
m0 A numeric vector. Hyperparameter; mean vector of the (multivariate) normal prior distribution for the mean of the normal component of the centering distribution. If missing, it is set to a vector of zeros of length Q (see Details).

S0
A numeric matrix. Hyperparameter; covariance matrix of the (multivariate) normal prior distribution for the mean of the normal component of the centering distribution. If missing, it is set to a diagonal matrix of dimension QxQ with 100 in the diagonal (see Details).

nu	A numeric value. Hyperparameter; degrees of freedom of the Wishart prior dis- tribution for the precision matrix of the the normal component of the centering distribution. If missing, it is set to $\mathrm{Q}+2$ (see Details)
Psi	A numeric matrix. Hyperparameter; scale matrix of the Wishart distribution for the precision matrix of the the normal component of the centering distribution. If missing, it is set to an identity matrix of dimension QxQ (see Details).
alpha A numeric value. Precision parameter of the Dirichlet Process. The default is 1	
(see Details).	
a A numeric value. Hyperparameter; shape parameter of the gamma prior distri-	
bution for the precision (inverse variance). The default is 2 (scaled data) (see	
Details).	
b A numeric value. Hyperparameter; rate parameter of the gamma prior distribu-	
tion for the precision (inverse variance). The default is 0.5 (scaled data) (see	

Details

Estimates the covariate-adjusted ROC curve (AROC) defined as

$$
A R O C(t)=\operatorname{Pr}\left\{1-F_{\bar{D}}\left(Y_{D} \mid \mathbf{X}_{D}\right) \leq t\right\}
$$

where $F_{\bar{D}}\left(\cdot \mid \mathbf{X}_{\bar{D}}\right)$ denotes the conditional distribution function for $Y_{\bar{D}}$ conditional on the vector of covariates $\mathbf{X}_{\bar{D}}$. In particular, the method implemented in this function combines a B-splines dependent Dirichlet process mixture model to estimate $F_{\bar{D}}\left(\cdot \mid \mathbf{X}_{\bar{D}}\right)$ and the Bayesian bootstrap (Rubin, 1981) to estimate the outside probability. More precisely, and letting $\left\{\left(\mathbf{x}_{\bar{D} i}, y_{\bar{D} i}\right)\right\}_{i=1}^{n_{\bar{D}}}$ be a random sample from the nondiseased population

$$
F_{\bar{D}}\left(y_{\bar{D} i} \mid \mathbf{X}_{\bar{D}}=\mathbf{x}_{\bar{D} i}\right)=\sum_{l=1}^{L} \omega_{l} \Phi\left(y_{\bar{D} i} \mid \mu_{l}\left(\mathbf{x}_{\bar{D} i}\right), \sigma_{l}^{2}\right)
$$

where $\mu_{l}\left(\mathbf{x}_{\bar{D} i}\right)=\mathbf{z}_{\bar{D} i}^{T} \beta_{l}$ and L is pre-specified (maximum number of mixture components). The ω_{l} 's result from a truncated version of the stick-breaking construction $\left(\omega_{1}=v_{1} ; \omega_{l}=v_{l} \prod_{r<l}(1-\right.$ $\left.\left.v_{r}\right), l=2, \ldots, L ; v_{1}, \ldots, v_{L-1} \sim \operatorname{Beta}(1, \alpha) ; v_{L}=1\right), \beta_{l} \sim N_{Q}(\mathbf{m}, \mathbf{S})$, and $\sigma_{l}^{-2} \sim \Gamma(a, b)$. It is assumed that $\mathbf{m} \sim N_{Q}\left(\mathbf{m}_{0}, \mathbf{S}_{0}\right)$ and $\mathbf{S}^{-1} \sim W\left(\nu,(\nu \Psi)^{-1}\right)$. Here $W\left(\nu,(\nu \Psi)^{-1}\right)$ denotes a Wishart distribution with ν degrees of freedom and expectation Ψ^{-1}, and Q denotes the dimension of vector $\mathbf{z}_{\bar{D} i}$. For a detailed description, we refer to Inacio de Carvalho and Rodriguez-Alvarez (2018).

Value

As a result, the function provides a list with the following components:

call	The matched call.		
p	Set of false positive fractions (FPF) at which the pooled ROC curve has been estimated.		
AUC	Estimated covariate-adjusted ROC curve (AROC) (posterior mean), and 95\% pointwise posterior credible band.		
Estimated area under the covariate-adjusted ROC curve (AAUC) (posterior mean),			
and 95\% pointwise posterior credible band.		\quad	If required, estimated partial area under the covariate-adjusted ROC curve (pAAUC)
:---			
(posterior mean), and 95\% pointwise posterior credible band.			

Note

The input argument formula.healthy is similar to that used for the glm function, except that flexible specifications can be added by means of function $f()$. For instance, specification $y \sim$ $x 1+f(x 2, K=3)$ would assume a linear effect of x 1 and the effect of x 2 would be modeled using B-splines basis functions. The argument $K=3$ indicates that 3 internal knots will be used, with the quantiles of $\times 2$ used for their location. Categorical variables (factors) can be also incorporated, as well as factor-by-curve interaction terms. For example, to include the interaction between age and gender we need to specify $y \sim$ gender $+f($ age, $b y=$ gender, $K=3)$.

References

Inacio de Carvalho, V., and Rodriguez-Alvarez, M. X. (2018). Bayesian nonparametric inference for the covariate-adjusted ROC curve. arXiv preprint arXiv:1806.00473.

Rubin, D. B. (1981). The Bayesian bootstrap. The Annals of Statistics, 9(1), 130-134.

See Also

```
AROC.bnp, AROC.bsp, AROC.sp, AROC.kernel, pooledROC.BB or pooledROC.emp.
```


Examples

```
library(AROC)
data(psa)
# Select the last measurement
newpsa <- psa[!duplicated(psa$id, fromLast = TRUE),]
# Log-transform the biomarker
newpsa$l_marker1 <- log(newpsa$marker1)
m0 <- AROC.bnp(formula.healthy = l_marker1 ~ f(age, K = 0),
group = "status", tag.healthy = 0, data = newpsa, scale = TRUE,
p = seq(0,1,l=101), compute.lpml = TRUE, compute.WAIC = TRUE,
a = 2, b = 0.5, L = 10, nsim = 5000, nburn = 1000)
    summary(m0)
    plot(m0)
```

 AROC.bsp
 Semiparametric Bayesian inference of the covariate-adjusted ROC
 curve (AROC).

Description

Estimates the covariate-adjusted ROC curve (AROC) using the semiparametric Bayesian normal linear regression model discussed in Inacio de Carvalho and Rodriguez-Alvarez (2018).

Usage

AROC.bsp(formula.healthy, group, tag.healthy, data, scale $=$ TRUE, $\mathrm{p}=\operatorname{seq}(0,1,1=101)$, paauc = paauccontrol(), compute.lpml = FALSE, compute. WAIC = FALSE, m0, S0, nu, Psi, $a=2, b=0.5$, nsim $=5000$, nburn $=1500$)

Arguments

formula.healthy
A formula object specifying the Bayesian normal linear regression model for the estimation of the conditional distribution function for the diagnostic test outcome in the healthy population (see Details).
group A character string with the name of the variable that distinguishes healthy from diseased individuals.

tag.healthy	The value codifying the healthy individuals in the variable group.
data	Data frame representing the data and containing all needed variables.
scale	A logical value. If TRUE the test outcomes are scaled, i.e., are divided by the standard deviation. The default is TRUE.
p	Set of false positive fractions (FPF) at which to estimate the covariate-adjusted ROC curve.
compute.lpml	A logical value. If TRUE, the log pseudo marginal likelihood (LPML, Geisser and Eddy, 1979) and the conditional predictive ordinates (CPO) are computed.
paauc	A list of control values to replace the default values returned by the function paauccontrol. This argument is used to indicate whether the partial area under the covariate-adjusted ROC curve (pAAUC) should be computed and at which FPF.
compute. WAIC	A logical value. If TRUE, the widely applicable information criterion (WAIC, Gelman et al., 2014; Watanabe, 2010) is computed.
m0	A numeric vector. Hyperparameter; mean vector of the (multivariate) normal distribution for the mean of the regression coefficients. If missing, it is set to a vector of zeros of length $p+1$ (see Details).
S0	A numeric matrix. Hyperprior. If missing, it is set to a diagonal matrix of dimension $(p+1) x(p+1)$ with 100 in the diagonal (see Details).
nu	A numeric value. Hyperparameter; degrees of freedom of the Wishart distribution for the precision matrix of the regression coefficients. If missing, it is set to $p+3$ (see Details)
Psi	A numeric matrix. Hyperparameter; scale matrix of the Wishart distribution for the precision matrix of the regression coefficients. If missing, it is set to an identity matrix of dimension $(p+1) x(p+1)$ (see Details).
a	A numeric value. Hyperparameter; shape parameter of the gamma distribution for the precision (inverse variance). The default is 2 (scaled data) (see Details).
b	A numeric value. Hyperparameter; rate parameter of the gamma distribution for the precision (inverse variance). The default is 0.5 (scaled data) (see Details).
nsim	A numeric value. Total number of Gibbs sampler iterates (including the burnin). The default is 5000 .
nburn	A numeric value. Number of burn-in iterations. The default is 1500 .

Details

Estimates the covariate-adjusted ROC curve (AROC) defined as

$$
A R O C(t)=\operatorname{Pr}\left\{1-F_{\bar{D}}\left(Y_{D} \mid \mathbf{X}_{D}\right) \leq t\right\}
$$

where $F_{\bar{D}}\left(\cdot \mid \mathbf{X}_{\bar{D}}\right)$ denotes the conditional distribution function for $Y_{\bar{D}}$ conditional on the vector of covariates $X_{\bar{D}}$. In particular, the method implemented in this function combines a Bayesian normal linear regression model to estimate $F_{\bar{D}}\left(\cdot \mid \mathbf{X}_{\bar{D}}\right)$ and the Bayesian bootstrap (Rubin, 1981) to estimate the outside probability. More precisely, and letting $\left\{\left(\mathbf{x}_{\bar{D} i}, y_{\bar{D} i}\right)\right\}_{i=1}^{n_{\bar{D}}}$ be a random sample from the nondiseased population

$$
F_{\bar{D}}\left(y_{\bar{D} i} \mid \mathbf{X}_{\bar{D}}=\mathbf{x}_{\bar{D} i}\right)=\Phi\left(y_{\bar{D} i} \mid \mathbf{x}_{\bar{D} i}^{* T} \beta^{*}, \sigma^{2}\right)
$$

where $\mathbf{x}_{\bar{D} i}^{* T}=\left(1, \mathbf{x}_{\bar{D} i}^{T}\right), \beta^{*} \sim N_{p+1}(\mathbf{m}, \mathbf{S})$ and $\sigma^{-2} \sim \Gamma(a, b)$. It is assumed that $\mathbf{m} \sim N_{p+1}\left(\mathbf{m}_{0}, \mathbf{S}_{0}\right)$ and $\mathbf{S}^{-1} \sim W\left(\nu,(\nu \Psi)^{-1}\right)$, where $p+1$ denotes the number of columns of the design matrix $\mathbf{X}_{\bar{D}}^{*}$. Here $W\left(\nu,(\nu \Psi)^{-1}\right)$ denotes a Wishart distribution with ν degrees of freedom and expectation Ψ^{-1}. For a detailed description, we refer to Inacio de Carvalho and Rodriguez-Alvarez (2018).

Value

As a result, the function provides a list with the following components:

call	The matched call.
p	Set of false positive fractions (FPF) at which the pooled ROC curve has been estimated.
ROC	Estimated covariate-adjusted ROC curve (AROC) (posterior mean), and 95% pointwise posterior credible band. Estimated area under the covariate-adjusted ROC curve (AAUC) (posterior mean), and 95\% pointwise posterior credible band.
pAUC	If required in the call to the function, estimated partial area under the covariate- adjusted ROC curve (pAAUC) (posterior mean), and 95\% pointwise posterior credible band.
WAIC	If required, list with two components: the log pseudo marginal likelihood (LPML) and the conditional predictive ordinates (CPO).
fit	If required, widely applicable information criterion (WAIC). Results of the fitting process. It is a list with the following components: (1) mm: information needed to construct the model matrix associated with the B- splines dependent Dirichlet process mixture model. (2) beta: matrix of di-
mension Nxp+1 with the sampled regression coefficients. Here, N is the number	
of Gibbs sampler iterates after burn-in, and p+1 the number of columns of the	
design matrix (see also Details). (3) sd: vector of length N with the sampled	
variances (see also Details).	

References

Inacio de Carvalho, V., and Rodriguez-Alvarez, M. X. (2018). Bayesian nonparametric inference for the covariate-adjusted ROC curve. arXiv preprint arXiv:1806.00473.

Rubin, D. B. (1981). The Bayesian bootstrap. The Annals of Statistics, 9(1), 130-134.

See Also

AROC.bnp, AROC.bsp, AROC.sp, AROC. kernel, pooledROC.BB or pooledROC.emp.

Examples

```
library(AROC)
data(psa)
# Select the last measurement
newpsa <- psa[!duplicated(psa$id, fromLast = TRUE),]
# Log-transform the biomarker
newpsa$l_marker1 <- log(newpsa$marker1)
m1 <- AROC.bsp(formula.healthy = l_marker1 ~ age,
group = "status", tag.healthy = 0, data = newpsa, scale = TRUE,
p = seq(0,1,l=101), compute.lpml = TRUE, compute.WAIC = TRUE,
a = 2, b = 0.5, nsim = 5000, nburn = 1500)
    summary(m1)
    plot(m1)
```

AROC.kernel Non parametric kernel-based estimation of the covariate-adjusted
ROC curve (AROC).

Description

Estimates the covariate-adjusted ROC curve (AROC) using the nonparametric kernel-based method proposed by Rodriguez-Alvarez et al. (2011). The method, as it stands now, can only deal with one continuous covariate.

Usage

AROC.kernel(marker, covariate, group, tag.healthy, data, $p=\operatorname{seq}(0,1, l=101), B=1000)$

Arguments

marker A character string with the name of the diagnostic test variable.
covariate A character string with the name of the continuous covariate.
group A character string with the name of the variable that distinguishes healthy from diseased individuals.
tag. healthy The value codifying the healthy individuals in the variable group.
data Data frame representing the data and containing all needed variables.
p Set of false positive fractions (FPF) at which to estimate the covariate-adjusted ROC curve.

B
An integer value specifying the number of bootstrap resamples for the construction of the confidence intervals. By default 1000.

Details

Estimates the covariate-adjusted ROC curve (AROC) defined as

$$
A R O C(t)=\operatorname{Pr}\left\{1-F_{\bar{D}}\left(Y_{D} \mid X_{D}\right) \leq t\right\}
$$

where $F_{\bar{D}}\left(\cdot \mid X_{D}\right)$ denotes the conditional distribution function for $Y_{\bar{D}}$ conditional on the vector of covariates $X_{\bar{D}}$. In particular, the method implemented in this function estimates the outer probability empirically (see Janes and Pepe, 2008) and $F_{\bar{D}}\left(\cdot \mid X_{\bar{D}}\right)$ is estimated assuming a nonparametric location-scale regression model for $Y_{\bar{D}}$, i.e.,

$$
Y_{\bar{D}}=\mu_{\bar{D}}\left(X_{\bar{D}}\right)+\sigma_{\bar{D}}\left(X_{\bar{D}}\right) \varepsilon_{\bar{D}}
$$

where $\mu_{\bar{D}}$ is the regression funcion, $\sigma_{\bar{D}}$ is the variance function, and $\varepsilon_{\bar{D}}$ has zero mean, variance one, and distribution function $F_{\bar{D}}$. As a consequence, and for a random sample $\left\{\left(x_{\bar{D} i}, y_{\bar{D} i}\right)\right\}_{i=1}^{n_{\bar{D}}}$

$$
F_{\bar{D}}\left(y_{\bar{D} i} \mid X_{\bar{D}}=x_{\bar{D} i}\right)=F_{\bar{D}}\left(\frac{y_{\bar{D} i}-\mu_{\bar{D}}\left(x_{\bar{D} i}\right)}{\sigma_{\bar{D}}\left(x_{\bar{D} i}\right)}\right)
$$

Both the regression and variance functions are estimated using the Nadaraya-Watson estimator, and the bandwidth are selected using least-squares cross-validation. Implementation relies on the Rpackage $n p$. No assumption is made about the distribution of $\varepsilon_{\bar{D}}$, which is empirically estimated on the basis of standardised residuals.

Value

As a result, the function provides a list with the following components:
call The matched call.
$\mathrm{p} \quad$ Set of false positive fractions (FPF) at which the pooled ROC curve has been estimated

ROC Estimated covariate-adjusted ROC curve (AROC), and 95\% pointwise confidence intervals (if required)

AUC Estimated area under the covariate-adjusted ROC curve (AAUC), and 95% pointwise confidence intervals (if required).
bw.mean An object of class npregbw with the selected bandwidth for the nonparametric regression function. For further details, see R-package np.
bw.var An object of class npregbw with the selected bandwidth for the nonparametric variance function. For further details, see R-package np.
fit.mean An object of class npreg with the nonparametric regression function estimate. For further details, see R-package np.
fit.var An object of class npreg with the nonparametric variance function estimate. For further details, see R-package np.

References

Hayfield, T., and Racine, J. S.(2008). Nonparametric Econometrics: The np Package. Journal of Statistical Software 27(5). URL http://www.jstatsoft.org/v27/i05/.
Inacio de Carvalho, V., and Rodriguez-Alvarez, M. X. (2018). Bayesian nonparametric inference for the covariate-adjusted ROC curve. arXiv preprint arXiv:1806.00473.
Rodriguez-Alvarez, M. X., Roca-Pardinas, J., and Cadarso-Suarez, C. (2011). ROC curve and covariates: extending induced methodology to the non-parametric framework. Statistics and Computing, 21(4), 483-499.

See Also

AROC.bnp, AROC.bsp, AROC.sp, AROC.kernel, pooledROC.BB or pooledROC.emp.

Examples

```
library(AROC)
data(psa)
# Select the last measurement
newpsa <- psa[!duplicated(psa$id, fromLast = TRUE),]
# Log-transform the biomarker
newpsa$l_marker1 <- log(newpsa$marker1)
m2 <- AROC.kernel(marker = "l_marker1", covariate = "age",
group = "status", tag.healthy = 0, data = newpsa,
p = seq(0,1,l=101), B = 500)
summary(m2)
plot(m2)
```

AROC.sp

Semiparametric frequentist inference of the covariate-adjusted ROC curve (AROC).

Description

Estimates the covariate-adjusted ROC curve (AROC) using the semiparametric approach proposed by Janes and Pepe (2009).

Usage

AROC.sp(formula.healthy, group, tag.healthy, data, est.surv.h $=c(" n o r m a l ", ~ " e m p i r i c a l "), ~ p=\operatorname{seq}(0,1, l=101), B=1000)$

Arguments

```
formula.healthy
```

A formula object specifying the location regression model to be fitted in healthy population (see Details).
group A character string with the name of the variable that distinguishes healthy from diseased individuals.
tag.heal thy The value codifying the healthy individuals in the variable group.
data Data frame representing the data and containing all needed variables.
est.surv.h A character string. It indicates how the conditional distribution function of the diagnostic test in healthy population is estimated. Options are "normal" and "empirical" (see Details). The default is "normal".
p Set of false positive fractions (FPF) at which to estimate the covariate-adjusted ROC curve.

B An integer value specifying the number of bootstrap resamples for the construction of the confidence intervals. By default 1000.

Details

Estimates the covariate-adjusted ROC curve (AROC) defined as

$$
A R O C(t)=\operatorname{Pr}\left\{1-F_{\bar{D}}\left(Y_{D} \mid \mathbf{X}_{D}\right) \leq t\right\}
$$

where $F_{\bar{D}}\left(\cdot \mid \mathbf{X}_{\bar{D}}\right)$ denotes the conditional distribution function for $Y_{\bar{D}}$ conditional on the vector of covariates $\mathbf{X}_{\bar{D}}$. In particular, the method implemented in this function estimates the outer probability empirically (see Janes and Pepe, 2008) and $F_{\bar{D}}\left(\cdot \mid \mathbf{X}_{\bar{D}}\right)$ is estimated assuming a semiparametric location regression model for $Y_{\bar{D}}$, i.e.,

$$
Y_{\bar{D}}=\mathbf{X}_{\bar{D}}^{T} \beta_{\bar{D}}+\sigma_{\bar{D}} \varepsilon_{\bar{D}}
$$

such that, for a random sample $\left\{\left(\mathbf{x}_{\bar{D} i}\right)\right\}_{i=1}^{n_{\bar{D}}}$ from the healthy population, we have

$$
F_{\bar{D}}\left(y \mid \mathbf{X}_{\bar{D}}=\mathbf{x}_{\bar{D} i}\right)=F_{\bar{D}}\left(\frac{y-\mathbf{x}_{\bar{D} i}^{T} \beta_{\bar{D}}}{\sigma_{\bar{D}}}\right),
$$

where $F_{\bar{D}}$ is the distribution function of $\varepsilon_{\bar{D}}$. In line with the assumptions made about the distribution of $\varepsilon_{\bar{D}}$, estimators will be referred to as: (a) "normal", where Gaussian error is assumed, i.e., $F_{\bar{D}}(y)=\Phi(y)$; and, (b) "empirical", where no assumption is made about the distribution (in this case, the distribution function $F_{\bar{D}}$ is empirically estimated on the basis of standardised residuals).

Value

As a result, the function provides a list with the following components:
call The matched call.
p
Set of false positive fractions (FPF) at which the pooled ROC curve has been estimated

ROC Estimated covariate-adjusted ROC curve (AROC), and 95\% pointwise confidence intervals (if required)
AUC Estimated area under the covariate-adjusted ROC curve (AAUC), and 95\% pointwise confidence intervals (if required).
fit.h Object of class lm with the fitted regression model in the healthy population.
est.surv.h The value of the argument est.surv.h used in the call.

References

Janes, H., and Pepe, M.S. (2009). Adjusting for covariate effects on classification accuracy using the covariate-adjusted receiver operating characteristic curve. Biometrika, 96(2), 371-382.

See Also

AROC.bnp, AROC.bsp, AROC.sp, AROC. kernel, pooledROC.BB or pooledROC.emp.

Examples

```
library(AROC)
data(psa)
# Select the last measurement
newpsa <- psa[!duplicated(psa$id, fromLast = TRUE),]
# Log-transform the biomarker
newpsa$l_marker1 <- log(newpsa$marker1)
m3 <- AROC.sp(formula.healthy = l_marker1 ~ age,
group = "status", tag.healthy = 0, data = newpsa,
p = seq(0,1,l=101), B = 500)
summary(m3)
plot(m3)
```

compute.threshold.AROC.bnp
AROC-based threshold values.

Description

Estimates AROC-based threshold values using the nonparametric Bayesian approach proposed by Inacio de Carvalho and Rodriguez-Alvarez (2018).

Usage

compute.threshold.AROC.bnp(object, newdata, FPF = 0.5)

Arguments

object An object of class AROC as produced by AROC.bnp.
newdata Data frame with the covariate values at which threshold values are required.
FPF Numeric vector with the FPF at which to calculate the AROC-based threshold values. Atomic values are also valid.

Details

Estimation of the covariate-adjusted ROC curve (AROC) using the nonparametric Bayesian approach proposed by Inacio de Carvalho and Rodriguez-Alvarez (2018) involves the estimation of the conditional distribution function for the diagnostic test outcome in the healthy population

$$
F_{\bar{D}}\left(y \mid \mathbf{X}_{\bar{D}}\right)=\operatorname{Pr}\left\{Y_{\bar{D}} \leq y \mid \mathbf{X}_{\bar{D}}\right\}
$$

This function makes use of this estimate in order to calculate AROC-based threshold values. In particular, for a covariate value \mathbf{x} and a $\mathrm{FPF}=\mathrm{t}$, the AROC-based threshold value at the s-th posterior sample $(s=1, \ldots, S)$ is calculated as follows

$$
c_{\mathbf{x}}^{(s)}=\hat{F}_{\bar{D}}^{-1(s)}\left(1-t \mid \mathbf{X}_{\bar{D}}=\mathbf{x}\right) .
$$

from which the posterior mean can be computed

$$
\hat{c}_{\mathbf{x}}=\frac{1}{S} \sum_{s=1}^{S} c_{\mathbf{x}}^{(s)}
$$

Value

As a result, the function provides a list with the following components:
thresholds.est A matrix with the posterior mean of the AROC-based threshold values. The matrix has as many columns as different covariate vector values, and as many rows as different FPFs.
thresholds.ql A matrix with the posterior 2.5\% quantile of the AROC-based threshold values. The matrix has as many columns as different covariate vector values, and as many rows as different FPFs.
thresholds.qh A matrix with the posterior 97.5% quantile of the AROC-based threshold values. The matrix has as many columns as different covariate vector values, and as many rows as different FPFs.

References

Inacio de Carvalho, V., and Rodriguez-Alvarez, M. X. (2018). Bayesian nonparametric inference for the covariate-adjusted ROC curve. arXiv preprint arXiv:1806.00473.

See Also

AROC.bnp

Examples

```
library(AROC)
data(psa)
# Select the last measurement
newpsa <- psa[!duplicated(psa$id, fromLast = TRUE),]
# Log-transform the biomarker
newpsa$l_marker1 <- log(newpsa$marker1)
m0 <- AROC.bnp(formula.healthy = l_marker1 ~ f(age, K = 0),
group = "status", tag.healthy = 0, data = newpsa, scale = TRUE,
p = seq(0,1,l=101), compute.lpml = TRUE, compute.WAIC = TRUE,
a = 2, b = 0.5, L = 10, nsim = 5000, nburn = 1000)
# Compute the threshold values
FPF = c(0.1, 0.3)
newdata <- data.frame(age = seq(52, 80, l = 50))
th_bnp <- compute.threshold.AROC.bnp(m0, newdata, FPF)
names(th_bnp)
```

compute.threshold.AROC.bsp
AROC-based threshold values.

Description

Estimates AROC-based threshold values using the semiparametric Bayesian normal linear regression model discussed in Inacio de Carvalho and Rodriguez-Alvarez (2018).

Usage

compute.threshold.AROC.bsp(object, newdata, FPF = 0.5)

Arguments

object An object of class AROC as produced by AROC.bsp.
newdata Data frame with the covariate values at which threshold values are required.
FPF
Numeric vector with the FPF at which to calculate the AROC-based threshold values. Atomic values are also valid.

Details

Estimation of the covariate-adjusted ROC curve (AROC) using the semiparametric Bayesian normal linear regression model discussed in Inacio de Carvalho and Rodriguez-Alvarez (2018) involves the estimation of the conditional distribution function for the diagnostic test outcome in the healthy population

$$
F_{\bar{D}}\left(y \mid \mathbf{X}_{\bar{D}}\right)=\operatorname{Pr}\left\{Y_{\bar{D}} \leq y \mid \mathbf{X}_{\bar{D}}\right\}
$$

This function makes use of this estimate in order to calculate AROC-based threshold values. In particular, for a covariate value \mathbf{x} and a $\mathrm{FPF}=\mathrm{t}$, the AROC-based threshold value at the s-th posterior sample $(s=1, \ldots, S)$ is calculated as follows

$$
c_{\mathbf{x}}^{(s)}=\hat{F}_{\bar{D}}^{-1(s)}\left(1-t \mid \mathbf{X}_{\bar{D}}=\mathbf{x}\right)
$$

from which the posterior mean can be computed

$$
\hat{c}_{\mathbf{x}}=\frac{1}{S} \sum_{s=1}^{S} c_{\mathbf{x}}^{(s)}
$$

Value

As a result, the function provides a list with the following components:
thresholds.est A matrix with the posterior mean of the AROC-based threshold values. The matrix has as many columns as different covariate vector values, and as many rows as different FPFs.
thresholds.ql A matrix with the posterior 2.5\% quantile of the AROC-based threshold values. The matrix has as many columns as different covariate vector values, and as many rows as different FPFs.
thresholds.qh A matrix with the posterior 97.5\% quantile of the AROC-based threshold values. The matrix has as many columns as different covariate vector values, and as many rows as different FPFs.

References

Inacio de Carvalho, V., and Rodriguez-Alvarez, M. X. (2018). Bayesian nonparametric inference for the covariate-adjusted ROC curve. arXiv preprint arXiv:1806.00473.

See Also

> AROC.bsp

Examples

```
library(AROC)
data(psa)
# Select the last measurement
newpsa <- psa[!duplicated(psa$id, fromLast = TRUE),]
# Log-transform the biomarker
newpsa$l_marker1 <- log(newpsa$marker1)
m1 <- AROC.bsp(formula.healthy = l_marker1 ~ age,
group = "status", tag.healthy = 0, data = newpsa, scale = TRUE,
p = seq(0,1,l=101), compute.lpml = TRUE, compute.WAIC = TRUE,
a = 2, b = 0.5, nsim = 5000, nburn = 1500)
# Compute the threshold values
FPF = c(0.1, 0.3)
newdata <- data.frame(age = seq(52, 80, l = 50))
th_bsp <- compute.threshold.AROC.bsp(m1, newdata, FPF)
names(th_bsp)
```

compute.threshold.AROC.kernel
AROC-based threshold values.

Description

Estimates AROC-based threshold values using the nonparametric kernel-based method proposed by Rodriguez-Alvarez et al. (2011).

Usage

compute.threshold.AROC.kernel(object, newcovariate, $\mathrm{FPF}=0.5$)

Arguments

object An object of class AROC as produced by AROC. kernel.
newcovariate Numeric vector with the covariate values at which threshold values are required.
FPF
Numeric vector with the FPF at which to calculate the AROC-based threshold values. Atomic values are also valid.

Details

Estimation of the covariate-adjusted ROC curve (AROC) using the nonparametric kernel-based method proposed by Rodriguez-Alvarez et al. (2011) involves the estimation of the conditional distribution function for the diagnostic test outcome in the healthy population

$$
F_{\bar{D}}\left(y \mid X_{\bar{D}}\right)=\operatorname{Pr}\left\{Y_{\bar{D}} \leq y \mid X_{\bar{D}}\right\}
$$

This function makes use of this estimate in order to calculate AROC-based threshold values. In particular, for a covariate value x and a $\mathrm{FPF}=\mathrm{t}$, the AROC-based threshold value is calculated as follows

$$
\hat{c}_{\mathbf{x}}=\hat{F}_{\bar{D}}^{-1}\left(1-t \mid \mathbf{X}_{\bar{D}}=\mathbf{x}\right)
$$

Value

A matrix with the computed AROC-based threshold values. The matrix has as many columns as different covariate values, and as many rows as different FPFs.

References

Hayfield, T., and Racine, J. S.(2008). Nonparametric Econometrics: The np Package. Journal of Statistical Software 27(5). URL http://www.jstatsoft.org/v27/i05/.
Inacio de Carvalho, V., and Rodriguez-Alvarez, M. X. (2018). Bayesian nonparametric inference for the covariate-adjusted ROC curve. arXiv preprint arXiv:1806.00473.

Rodriguez-Alvarez, M. X., Roca-Pardinas, J., and Cadarso-Suarez, C. (2011). ROC curve and covariates: extending induced methodology to the non-parametric framework. Statistics and Computing, 21(4), 483-499.

See Also

```
AROC.kernel
```


Examples

```
library(AROC)
data(psa)
# Select the last measurement
newpsa <- psa[!duplicated(psa$id, fromLast = TRUE),]
# Log-transform the biomarker
newpsa$l_marker1 <- log(newpsa$marker1)
m2 <- AROC.kernel(marker = "l_marker1", covariate = "age",
group = "status", tag.healthy = 0, data = newpsa,
p = seq(0,1,l=101), B = 500)
# Compute the threshold values
cov.values <- seq(52, 80, l = 50)
FPF = c(0.1, 0.3)
```

```
th_np <- compute.threshold.AROC.kernel(m2, cov.values, FPF)
```

compute.threshold.AROC.sp

AROC-based threshold values.

Description

Estimates AROC-based threshold values using the semiparametric approach proposed by Janes and Pepe (2009).

Usage

compute.threshold.AROC.sp(object, newdata, FPF = 0.5)

Arguments

object An object of class AROC as produced by AROC.sp.
newdata Data frame with the covariate values at which threshold values are required.
FPF Numeric vector with the FPF at which to calculate the AROC-based threshold values. Atomic values are also valid.

Details

Estimation of the covariate-adjusted ROC curve (AROC) using the semiparametric approach proposed by Janes and Pepe (2009) involves the estimation of the conditional distribution function for the diagnostic test outcome in the healthy population

$$
F_{\bar{D}}\left(y \mid \mathbf{X}_{\bar{D}}\right)=\operatorname{Pr}\left\{Y_{\bar{D}} \leq y \mid \mathbf{X}_{\bar{D}}\right\}
$$

This function makes use of this estimate in order to calculate AROC-based threshold values. In particular, for a covariate value x and a $\mathrm{FPF}=\mathrm{t}$, the AROC-based threshold value is calculated as follows

$$
\hat{c}_{\mathbf{x}}=\hat{F}_{\bar{D}}^{-1}\left(1-t \mid \mathbf{X}_{\bar{D}}=\mathbf{x}\right)
$$

Value

A matrix with the computed AROC-based threshold values. The matrix has as many columns as different covariate vector values, and as many rows as different FPFs.

References

Janes, H., and Pepe, M.S. (2009). Adjusting for covariate effects on classification accuracy using the covariate-adjusted receiver operating characteristic curve. Biometrika, 96(2), 371-382.

See Also

AROC. sp

Examples

```
library(AROC)
data(psa)
# Select the last measurement
newpsa <- psa[!duplicated(psa$id, fromLast = TRUE),]
# Log-transform the biomarker
newpsa$l_marker1 <- log(newpsa$marker1)
m3 <- AROC.sp(formula.healthy = l_marker1 ~ age,
group = "status", tag.healthy = 0, data = newpsa,
p = seq(0,1,l=101), B = 500)
FPF = c(0.1, 0.3)
newdata <- data.frame(age = seq(52, 80, l = 50))
th_sp <- compute.threshold.AROC.sp(m3, newdata, FPF)
names(th_sp)
```

compute.threshold. pooledROC.BB
Pooled ROC-based threshold values.

Description

Estimates pooled ROC-based threshold values using the Bayesian bootstrap estimator proposed by Gu et al. (2008).

Usage

compute.threshold.pooledROC. BB (object, $\mathrm{FPF}=0.5$)

Arguments

object An object of class AROC as produced by pooledROC.BB.
FPF
Numeric vector with the FPF at which to calculate the pooled ROC-based threshold values. Atomic values are also valid.

Value

As a result, the function provides a list with the following components:
thresholds A matrix with the posterior mean and posterior 2.5\% and 97.5% quantiles of the pooled ROC-based threshold values. The matrix has as many rows as different FPFs.

FPF the supplied FPF argument
TPF TPFs corresponding to the estimated threshold. In addition to the posterior mean, the 95% pointwise credible band is also returned.

References

Gu, J., Ghosal, S., and Roy, A. (2008). Bayesian bootstrap estimation of ROC curve. Statistics in Medicine, 27, 5407-5420.

See Also

pooledROC.BB

Examples

```
library(AROC)
data(psa)
# Select the last measurement
newpsa <- psa[!duplicated(psa$id, fromLast = TRUE),]
# Log-transform the biomarker
newpsa$1_marker1 <- log(newpsa$marker1)
m0_BB <- pooledROC.BB(y0 = newpsa$l_marker1[newpsa$status == 0],
        y1 = newpsa$l_marker1[newpsa$status == 1], p = seq(0,1,l=101), B = 5000)
### Threshold values for a fixed FPF
th_m0_BB <- compute.threshold.pooledROC.BB(m0_BB, FPF = 0.1)
th_m0_BB$threshold
```

compute. threshold. pooledROC.emp
Pooled ROC-based threshold values.

Description

Estimates pooled ROC-based threshold values using the empirical estimator proposed by Hsieh and Turnbull (1996).

Usage

compute.threshold.pooledROC.emp(object, FPF = 0.5)

Arguments

$$
\begin{array}{ll}
\text { object } & \text { An object of class AROC as produced by pooledROC. emp. } \\
\text { FPF } & \begin{array}{l}
\text { Numeric vector with the FPF at which to calculate the pooled ROC-based thresh- } \\
\text { old values. Atomic values are also valid. }
\end{array}
\end{array}
$$

Value

As a result, the function provides a list with the following components:
thresholds A vector with the estimated pooled ROC-based threshold values, one for each specified FPF.

FPF the supplied FPF argument
TPF TPFs corresponding to the estimated threshold.

References

Hsieh, F., and Turnbull, B.W. (1996). Nonparametric and semiparametric estimation of the receiver operating characteristic curve, The Annals of Statistics, 24, 25-40.

See Also

```
pooledROC.emp
```


Examples

```
library(AROC)
data(psa)
# Select the last measurement
newpsa <- psa[!duplicated(psa$id, fromLast = TRUE),]
# Log-transform the biomarker
newpsa$l_marker1 <- log(newpsa$marker1)
m0_emp <- pooledROC.emp(y0 = newpsa$1_marker1[newpsa$status == 0],
    y1 = newpsa$1_marker1[newpsa$status == 1], p = seq(0,1,l=101), B = 500)
### Threshold values for a fixed FPF
th_m0_emp <- compute.threshold.pooledROC.emp(m0_emp, FPF = 0.1)
th_m0_emp$threshold
```


Description

Used to set various parameters controlling the estimation of the partial area under the covariateadjusted ROC curve (pAAUC).

Usage

paauccontrol (compute $=$ FALSE, value $=1$)

Arguments

compute Logical value. If TRUE the partial area under the covariate-adjusted ROC curve (pAAUC) is estimated.
value \quad Numeric value. Pre-specified maximum false positive fraction (FPF) at which to calculate the pAAUC.

Details

The value returned by this function is used as a control argument of the AROC.bnp and AROC.bsp functions.

Value

a list with components for each of the possible arguments.

References

Inacio de Carvalho, V., and Rodriguez-Alvarez, M. X. (2018). Bayesian nonparametric inference for the covariate-adjusted ROC curve. Technical report.

See Also

AROC.bnp and AROC.bsp

Examples

```
library(AROC)
data(psa)
# Select the last measurement
newpsa <- psa[!duplicated(psa$id, fromLast = TRUE),]
# Log-transform the biomarker
newpsa$l_marker1 <- log(newpsa$marker1)
m0 <- AROC.bnp(formula.healthy = l_marker1 ~ f(age, K = 0),
```

```
group = "status", tag.healthy = 0, data = newpsa, scale = TRUE,
p = seq(0,1,l=101), paauc = list(compute = TRUE, value = 0.3),
compute.lpml = TRUE, compute.WAIC = TRUE,
a = 2, b = 0.5, L = 10, nsim = 5000, nburn = 1000)
summary(m0)
```

plot.AROC Default AROC plotting

Description

Takes a fitted AROC object produced by AROC.bnp(), AROC.bsp(), AROC.sp(), AROC.kernel(), pooledROC. BB () or pooledROC.emp() and plots the covariate-adjusted ROC curve (AROC) and associated area under the AROC (AAUC); or the pooled ROC curve and associated AUC.

Usage

```
## S3 method for class 'AROC'
```

plot(x, ...)

Arguments

x	an object of class AROC as produced by AROC.bnp(),AROC.bsp(), AROC.sp(),
	AROC.kernel(), pooledROC.BB() or pooledROC.emp()

See Also

AROC.bnp, AROC.bsp, AROC.sp, AROC. kernel, pooledROC.BB or pooledROC.emp.

Examples

```
library(AROC)
data(psa)
# Select the last measurement
newpsa <- psa[!duplicated(psa$id, fromLast = TRUE),]
# Log-transform the biomarker
newpsa$l_marker1 <- log(newpsa$marker1)
m0 <- AROC.bnp(formula.healthy = l_marker1 ~ f(age, K = 0),
group = "status", tag.healthy = 0, data = newpsa, scale = TRUE,
p = seq(0,1,l=101), compute.lpml = TRUE, compute.WAIC = TRUE,
a = 2, b = 0.5, L = 10, nsim = 5000, nburn = 1000)
plot(m0)
```

```
    pooledROC.BB
```


Description

Estimates the pooled ROC curve using the Bayesian bootstrap estimator proposed by Gu et al. (2008).

Usage

pooledROC. $\mathrm{BB}(\mathrm{y} 0, \mathrm{y} 1, \mathrm{p}=\operatorname{seq}(0,1, \mathrm{l}=101), \mathrm{B}=5000)$

Arguments

y0 Diagnostic test outcomes in the healthy group.
y1 Diagnostic test outcomes in the diseased group.
$\mathrm{p} \quad$ Set of false positive fractions (FPF) at which to estimate the covariate-adjusted ROC curve.

B An integer value specifying the number of Bayesian bootstrap resamples. By default 5000.

Value

As a result, the function provides a list with the following components:
call the matched call.
$\mathrm{p} \quad$ Set of false positive fractions (FPF) at which the pooled ROC curve has been estimated

ROC Estimated pooled ROC curve, and corresponding 95\% credible intervals
AUC Estimated pooled AUC, and corresponding 95\% credible intervals.

References

Gu, J., Ghosal, S., and Roy, A. (2008). Bayesian bootstrap estimation of ROC curve. Statistics in Medicine, 27(26), 5407-5420.

See Also

AROC.bnp, AROC.bsp, AROC.sp, AROC. kernel, pooledROC. BB or pooledROC.emp.

Examples

```
library(AROC)
data(psa)
# Select the last measurement
newpsa <- psa[!duplicated(psa$id, fromLast = TRUE),]
# Log-transform the biomarker
newpsa$l_marker1 <- log(newpsa$marker1)
m0_BB <- pooledROC.BB(newpsa$l_marker1[newpsa$status == 0],
newpsa$l_marker1[newpsa$status == 1], p = seq(0,1,l=101), B = 5000)
summary(m0_BB)
plot(m0_BB)
```

 pooledROC.emp Empirical estimation of the pooled ROC curve.

Description

Estimates the pooled ROC curve using the empirical estimator proposed by Hsieh and Turnbull (1996).

Usage

pooledROC.emp $(y 0, y 1, p=\operatorname{seq}(0,1,1=101), B=500$, method = c("ncoutcome", "coutcome"))

Arguments

y0 Diagnostic test outcomes in the healthy group.
y1 Diagnostic test outcomes in the diseased group.
p Set of false positive fractions (FPF) at which to estimate the covariate-adjusted ROC curve.

B
An integer value specifying the number of bootstrap resamples for the construction of the confidence intervals. By default 500.
method A character string specifying if bootstrap resampling (for the confidence intervals) should be done with or without regard to the disease status ("coutcome" or "noutcome"). In both cases, a naive bootstrap is used. By default, the resampling is done conditionally on the disease status.

Value

As a result, the function provides a list with the following components:
call the matched call.
$\mathrm{p} \quad$ Set of false positive fractions (FPF) at which the pooled ROC curve has been estimated
ROC Estimated pooled ROC curve, and corresponding 95% confidence intervals (if required)
AUC Estimated pooled AUC, and corresponding 95\% confidence intervals (if required).

References

Hsieh, F., and Turnbull, B.W. (1996). Nonparametric and semiparametric estimation of the receiver operating characteristic curve, The Annals of Statistics, 24, 25-40.

See Also

AROC.bnp, AROC.bsp, AROC.sp, AROC. kernel, pooledROC.BB or pooledROC.emp.

Examples

```
library(AROC)
data(psa)
# Select the last measurement
newpsa <- psa[!duplicated(psa$id, fromLast = TRUE),]
# Log-transform the biomarker
newpsa$l_marker1 <- log(newpsa$marker1)
m0_emp <- pooledROC.emp(newpsa$1_marker1[newpsa$status == 0],
newpsa$l_marker1[newpsa$status == 1], p = seq(0,1,l=101), B = 500)
summary (m0_emp)
plot(m0_emp)
```

predictive.checks.AROC.bnp
Posterior predictive checks.

Description

Implements posterior predictive checks. Compares a selected test statistic computed based on the diagnostic test outcome in the nondiseased group against the same test statistics computed based on generated data from the posterior predictive distribution of the diagnostic test outcome in the nondiseased group obtained using a B-splines dependent Dirichlet process mixture model as described in Inacio de Carvalho and Rodriguez-Alvarez (2018).

Usage

predictive.checks.AROC.bnp(object,
statistics = c("min", "max", "kurtosis", "skewness"), devnew = TRUE)

Arguments

object An object of class AROC as produced by AROC.bnp.
statistics Character vector. Statistics to be used for the posterior predictive checking. By default, "min", "max", "kurtosis" and "skewness"
devnew logical. If TRUE, each plot is depicted in a new graphic device.

Details

The following graphics are depicted: (1) histograms of the desired statistics computed from a number of simulated datasets drawn from the posterior predictive distribution of the diagnostic test outcome in the nondiseased group. In these plots, the estimated statistics from the observed diagnostic test outcome in the nondiseased group are also depicted. (2) Kernel density estimates computed from a number of simulated datasets drawn from the posterior predictive distribution of the diagnostic test outcome in the nondiseased group. In these plots, the kernel density estimate of the observed diagnostic test outcome in the nondiseased group is also depicted. For a detailed discussion about predictive checks, see Gabry et al. (2017).

Value

As a result, the function provides a list with the following components:
yrep Matrix. Each column corresponds to a dataset generated from the posterior predictive distribution of the diagnostic test outcome in the nondiseased group.
y0 Numeric vector. Observed diagnostic test outcome in the nondiseased group.

References

Gabry, J., Simpson, D., Vehtari, A., Betancourt, M., and Gelman, A. (2017). Visualization in Bayesian workflow. arXiv preprint arXiv:1709.01449.
Inacio de Carvalho, V., and Rodriguez-Alvarez, M. X. (2018). Bayesian nonparametric inference for the covariate-adjusted ROC curve. arXiv preprint arXiv:1806.00473.

See Also

AROC.bnp

Examples

```
library(AROC)
data(psa)
# Select the last measurement
newpsa <- psa[!duplicated(psa$id, fromLast = TRUE),]
# Log-transform the biomarker
```

```
newpsa$l_marker1 <- log(newpsa$marker1)
m0 <- AROC.bnp(formula.healthy = l_marker1 ~ f(age, K = 0),
group = "status", tag.healthy = 0, data = newpsa, scale = TRUE,
p = seq(0,1,l=101), compute.lpml = TRUE, compute.WAIC = TRUE,
a = 2, b = 0.5, L = 10, nsim = 5000, nburn = 1000)
predictive.checks.AROC.bnp(m0, statistics = "skewness")
```

predictive.checks.AROC.bsp
Posterior predictive checks.

Description

Implements posterior predictive checks. Compares a selected test statistic computed based on the diagnostic test outcome in the nondiseased group against the same test statistics computed based on generated data from the posterior predictive distribution of the diagnostic test outcome in the nondiseased group obtained using a Bayesian normal linear regression model as discussed in Inacio de Carvalho and Rodriguez-Alvarez (2018).

Usage

predictive.checks.AROC.bsp(object,
statistics = c("min", "max", "median", "skewness"), devnew = TRUE)

Arguments

object An object of class AROC as produced by AROC.bsp.
statistics Character vector. Statistics to be used for the posterior predictive checking. By default, "min", "max", "median" and "skewness"
devnew logical. If TRUE, each plot is depicted in a new graphic device.

Details

The following graphics are depicted: (1) histograms of the desired test statistics computed from a number of simulated datasets drawn from the posterior predictive distribution of the diagnostic test outcome in the nondiseased group. In these plots, the estimated statistics from the observed diagnostic test outcome in the nondiseased group are also depicted. (2) Kernel density estimates computed from a number of simulated datasets drawn from the posterior predictive distribution of the diagnostic test outcome in the nondiseased group. In these plots, the kernel density estimate of the observed diagnostic test outcome in the nondiseased group is also depicted. For a detailed discussion about predictive checks, see Gabry et al. (2017).

Value

As a result, the function provides a list with the following components:
yrep Matrix. Each column corresponds to a dataset generated from the posterior predictive distribution of the diagnostic test outcome in the nondiseased group.
y0 Numeric vector. Observed diagnostic test outcome in the nondiseased group.

References

Gabry, J., Simpson, D., Vehtari, A., Betancourt, M., and Gelman, A. (2017). Visualization in Bayesian workflow. arXiv preprint arXiv:1709.01449.
Inacio de Carvalho, V., and Rodriguez-Alvarez, M. X. (2018). Bayesian nonparametric inference for the covariate-adjusted ROC curve. arXiv preprint arXiv:1806.00473.

See Also

AROC.bsp

Examples

```
library(AROC)
data(psa)
# Select the last measurement
newpsa <- psa[!duplicated(psa$id, fromLast = TRUE),]
# Log-transform the biomarker
newpsa$l_marker1 <- log(newpsa$marker1)
m1 <- AROC.bsp(formula.healthy = l_marker1 ~ age,
group = "status", tag.healthy = 0, data = newpsa, scale = TRUE,
p = seq(0,1,l=101), compute.lpml = TRUE, compute.WAIC = TRUE,
a = 2, b = 0.5, nsim = 5000, nburn = 1500)
predictive.checks.AROC.bsp(m1, statistics = "mean")
```

```
print.AROC Print method for AROC objects
```


Description

Default print method for objects fitted with AROC.bnp(), AROC.bsp(), AROC.sp(), AROC.kernel(), pooledROC. BB() or pooledROC.emp() functions.

Usage

\#\# S3 method for class 'AROC'
print(x, ...)

Arguments

x
an object of class AROC as produced by AROC.bnp(), AROC.bsp(), AROC.sp(), AROC.kernel(), pooledROC.BB() or pooledROC.emp()
. . further arguments passed to or from other methods. Not yet implemented.

Details

A short summary is printed including: TODO

See Also

AROC.bnp, AROC.bsp, AROC.sp, AROC. kernel, pooledROC.BB or pooledROC.emp.

Examples

```
library(AROC)
data(psa)
# Select the last measurement
newpsa <- psa[!duplicated(psa$id, fromLast = TRUE),]
# Log-transform the biomarker
newpsa$l_marker1 <- log(newpsa$marker1)
m0 <- AROC.bnp(formula.healthy = l_marker1 ~ f(age, K = 0),
group = "status", tag.healthy = 0, data = newpsa, scale = TRUE,
p = seq(0,1,l=101), compute.lpml = TRUE, compute.WAIC = TRUE,
a = 2, b = 0.5, L = 10, nsim = 5000, nburn = 1000)
m0
```

psa Prostate specific antigen (PSA) biomarker study.

Description

The dataset contains 71 prostate cases and 71 controls who participated in a lung cancer prevention trial (CARET, Beta-carotene and retinol trial). For details, see Etzioni et al. (1999) and Pepe (2003).

Usage

data("psa")

Format

A data frame with 683 observations on the following 6 variables.
id Patient identifier.
marker1 total prostate specific antigen (PSA).
marker2 free prostate specific antigen (PSA)
status presence/absence of prostate cancer. The non-cancer patients are controls matched to cases on age and number of serum samples available for analysis (see Details).
age patient age at blood draw (serum sample).
t time (years) relative to prostate cancer diagnosis.

Details

The CARET enrolled 12000 men, aged 50 and 65 , at high risk of lung cancer. For each subject on the study, serum samples were drawn at baseline and at two-year intervals after that. The data presented here represent a subsample of the original sample, and it was reported by Etzioni et al. (1999). It contains 71 cases of prostate cancer occurred during the study. All these cases had, at least, three and up to eight serum samples. As far as controls are concerned, they were selected from the participants of the CARET verifying that had not been diagnosed with prostate cancer by the time of the original study, and the selection was done by matching to cases on date of birth and number of serum samples available for analysis.

Source

The dataset can be downloaded from https://research.fhcrc.org/diagnostic-biomarkers-center/ en/datasets.html.

References

Pepe, M. S. (2003). The Statistical Evaluation of Medical Tests for Classification and Prediction. Oxford Statistical Science Series. Oxford University Press, New York.

Etzioni, R., Pepe, M. S., Longton, G., Hu. C., and Goodman, G. (1999). Incorporating the time dimension in receiver operating characteristic curves: A case study of prostate cancer. Medical Decision Making, 19(3), 242-251.

Examples

data(psa)
summary (psa)
summary.AROC Summary method for AROC objects

Description

Default summary method for objects fitted with AROC.bnp(), AROC.bsp(), AROC.sp(), AROC.kernel(), pooledROC.BB() or pooledROC.emp() functions.

Usage

\#\# S3 method for class 'AROC'
summary (object, ...)

Arguments

object an object of class AROC as produced by AROC.bnp(), AROC.bsp(), AROC.sp(), AROC.kernel(), pooledROC.BB() or pooledROC.emp()
. . Further arguments passed to or from other methods. Not yet implemented.

Details

A short summary is printed including the area under the covariate-adjusted ROC curve (AAUC) or the area under the pooled ROC curve (AUC), and if required, the partial area under the covariateadjusted ROC curve (pAAUC). For the Bayesian methods, and if required, the function also provides the \log pseudo marginal likelihood (LPML) and/or widely applicable information criterion (WAIC).

See Also

AROC.bnp, AROC.bsp, AROC.sp, AROC.kernel, pooledROC. BB or pooledROC.emp.

Examples

```
library(AROC)
data(psa)
# Select the last measurement
newpsa <- psa[!duplicated(psa$id, fromLast = TRUE),]
# Log-transform the biomarker
newpsa$l_marker1 <- log(newpsa$marker1)
m0 <- AROC.bnp(formula.healthy = l_marker1 ~ f(age, K = 0),
group = "status", tag.healthy = 0, data = newpsa, scale = TRUE,
p = seq(0,1,l=101), compute.lpml = TRUE, compute.WAIC = TRUE,
a = 2, b = 0.5, L = 10, nsim = 5000, nburn = 1000)
summary(m0)
```


Index

```
*Topic datasets
    psa, 31
*Topic package
    AROC-package, 2
AROC (AROC-package), 2
AROC-package, 2
AROC.bnp, 3, 6, 8, 11, 13, 14, 23-25, 27, 28,
    31,33
AROC.bsp, 6, 6, 8, 11, 13, 15, 16, 23-25, 27,
    29-31,33
AROC.kernel, 6, 8, 9, 11, 13, 17, 18, 24, 25,
    27,31,33
AROC.sp, 6, 8, 11, 11, 13, 19, 20, 24, 25, 27,
        31,33
compute.threshold.AROC.bnp, 13
compute.threshold.AROC.bsp, 15
compute.threshold.AROC.kernel, 17
compute.threshold.AROC.sp, 19
compute.threshold.pooledROC.BB, 20
compute.threshold.pooledROC.emp, 21
formula, 3, 6,12
glm, }
lm,13
np,10
npreg, 10
npregbw, 10
paauccontrol, 3, 7, 23
plot.AROC, 24
pooledROC.BB, 6, 8, 11, 13, 20, 21, 24, 25, 25,
    27,31,33
pooledROC.emp, 6, 8, 11, 13, 22, 24, 25, 26,
    27,31,33
predictive.checks.AROC.bnp, 27
predictive.checks.AROC.bsp, 29
```

