Package 'AIM'

February 19, 2015

Title AIM: adaptive index model

Version 1.01

Author L. Tian and R. Tibshirani

Description R functions for adaptively constructing index models for continuous, binary and survival outcomes. Implementation requires loading R-pacakge ``survival''

Maintainer Robert Tibshirani <tibs@stat.stanford.edu>

LazyLoad false

LazyData false

Depends survival

Imports survival

License LGPL-2

Repository CRAN

Date/Publication 2010-04-05 19:01:20

NeedsCompilation no

R topics documented:

backfit.cox.interaction
backfit.cox.main
backfit.lm.interaction
backfit.lm.main
backfit.logistic.interaction
backfit.logistic.main
cox.interaction
cox.main
cv.cox.interaction
cv.cox.main
cv.lm.interaction
cv.lm.main
cv.logistic.interaction
cv.logistic.main

index.prediction .																		19
lm.interaction																		20
lm.main																		22
logistic.interaction																		23
logistic.main			 															25
C																		
																		28

Index

backfit.cox.interaction

Internal function used in cox.interaction

Description

Internal functions used in cox.interaction

Author(s)

Lu Tian and Robert Tibshirani

backfit.cox.main Internal function used in cox.main

Description

Internal functions used in cox.main

Author(s)

Lu Tian and Robert Tibshirani

backfit.lm.interaction

Internal function used in lm.interaction

Description

Internal functions used in lm.interaction

Author(s)

Lu Tian and Robert Tibshirani

backfit.lm.main Internal function used in lm.main

Description

Internal functions used in lm.main

Author(s)

Lu Tian and Robert Tibshirani

backfit.logistic.interaction Internal function used in logistic.interaction

Description

Internal functions used in logistic.interaction

Author(s)

Lu Tian and Robert Tibshirani

backfit.logistic.main Internal function used in logistic.main

Description

Internal functions used in logistic.main

Author(s)

Lu Tian and Robert Tibshirani

cox.interaction

Description

Estimate adpative index model for survival outcomes in the context of Cox regression. The resulting index characterizes the interaction between covariates and treatment.

Usage

cox.interaction(x, trt, y, delta, nsteps=8, mincut=.1, backfit=F, maxnumcut=1, dirp=0)

Arguments

х	n by p matrix. The covariate matrix
trt	n vector. The treatment indicator
У	n vector. The observed follow-up time
delta	n 0/1 vector. The status indicator. 1=failure and 0=alive.
nsteps	the maximum number of binary rules to be included in the index
mincut	the minimum cutting proportion for the binary rule at either end. It typically is between 0 and 0.2.
backfit	T/F. Whether the existing split points are re-adjusted after including new a binary rule
maxnumcut	the maximum number of binary splits per predictor
dirp	p vector. The given direction of the binary split for each of the p predictors. 0 represents "no pre-given direction"; 1 represents " $(x>cut)$ " and -1 represents " $(x". Alternatively, "dirp=0" represents that there is no pre-given direction for any of the predictor.$

Details

cox.interaction sequentially estimates a sequence of adaptive index models with up to "nsteps" terms for survival outcomes. The aglorithm seeks the index having the strong interaction with the treatment in the Cox regression. The appropriate number of binary rules can be selected via K-fold cross-validation (cv.cox.interaction).

Value

cox.interaction returns maxsc, which is the observed partial likelihood score test statistics for the index*treatment interaction in the fitted model and res, which is a list with components

jmaa	number of predictors
cutp	split points for the binary rules
maxdir	direction of split: 1 represents "(x>cut)" and -1 represents "(x <cut)"< td=""></cut)"<>
maxsc	observed partial likelihood score test statistics for the interaction

cox.main

Author(s)

Lu Tian and Robert Tibshirani

References

Lu Tian and Robert Tibshirani (2010) "Adaptive index models for marker-based risk stratification", Tech Report, available at http://www-stat.stanford.edu/~tibs/AIM.

Examples

```
## generate data
set.seed(1)
n=400
p=10
x=matrix(rnorm(n*p), n, p)
z=(x[,1]<0.2)+(x[,5]>0.2)
beta=1
trt=rbinom(n,1,0.5)
fail.time=rexp(n)*exp(-beta*z*trt)
cen.time=rexp(n)*1.25
y=pmin(fail.time, cen.time)
y=round(y*10)/10
delta=1*(fail.time<cen.time)</pre>
## fit the interaction Cox AIM model
a=cox.interaction(x, trt, y, delta, nsteps=10)
## examine the model sequence
print(a)
## compute the index based on the 2nd model in the sequence using data x
z.prd=index.prediction(a$res[[2]],x)
## compute the index based on the 2nd model of the sequence using new data xx, and compare the result with the true
nn=10
xx=matrix(rnorm(nn*p), nn, p)
zz=(xx[,1]<0.2)+(xx[,5]>0.2)
zz.prd=index.prediction(a$res[[2]],xx)
cbind(zz, zz.prd)
```

```
cox.main
```

Main effect Cox adaptive index model

Description

Estimate adpative index model for survival outcomes in the context of Cox regression. The resulting index characterizes the main covariate effect on the hazard.

Usage

cox.main(x, y, delta, nsteps=8, mincut=.1, backfit=F, maxnumcut=1, dirp=0)

Arguments

x	n by p matrix. The covariate matrix
У	n vector. The observed follow-up time
delta	n 0/1 vector. The status indicator. 1=failure and 0=alive.
nsteps	the maximum number of binary rules to be included in the index
mincut	the minimum cutting proportion for the binary rule at either end. It typically is between 0 and 0.2.
backfit	T/F. Whether the existing split points are adjusted after including a new binary rule
maxnumcut	the maximum number of binary splits per predictor
dirp	p vector. The given direction of the binary split for each of the p predictors. 0 represents "no pre-given direction"; 1 represents " $(x>cut)$ "; -1 represents " $(x". Alternatively, "dirp=0" represents that there is no pre-given direction for any of the predictor.$

Details

cox.main sequentially estimates a sequence of adaptive index models with up to "nsteps" terms for survival outcomes. The appropriate number of binary rules can be selected via K-fold cross-validation (cv.cox.main).

Value

cox.main returns maxsc, which is the partial likelihood score test statistics in the fitted model and res, which is a list with components

jmaa	number of predictors
cutp	split points for the binary rules
maxdir	direction of split: 1 represents "(x>cut)" and -1 represents "(x <cut)"< td=""></cut)"<>
maxsc	observed partial likelihood score test statistics for the main effect

Author(s)

Lu Tian and Robert Tibshirani

References

Lu Tian and Robert Tibshirani (2010) "Adaptive index models for marker-based risk stratification", Tech Report, available at http://www-stat.stanford.edu/~tibs/AIM.

cv.cox.interaction

Examples

```
## generate data
set.seed(1)
n=200
p=10
x=matrix(rnorm(n*p), n, p)
z=(x[,1]<0.2)+(x[,5]>0.2)
beta=1
fail.time=rexp(n)*exp(-beta*z)
cen.time=rexp(n)*1.25
y=pmin(fail.time, cen.time)
y=round(y*10)/10
delta=1*(fail.time<cen.time)</pre>
## fit the main effect Cox AIM model
a=cox.main(x, y, delta, nsteps=10)
## examine the model sequence
print(a)
## compute the index based on the 2nd model of the sequence using data x
z.prd=index.prediction(a$res[[2]],x)
## compute the index based on the 2nd model of the sequence using new data xx, and compare the result with the true
nn=10
xx=matrix(rnorm(nn*p), nn, p)
zz=(xx[,1]<0.2)+(xx[,5]>0.2)
zz.prd=index.prediction(a$res[[2]],xx)
cbind(zz, zz.prd)
```

cv.cox.interaction Cross-validation in the interaction Cox AIM

Description

Cross-validation for selecting the number of binary rules in interaction AIM with survival outcomes in the context of Cox regression.

Usage

cv.cox.interaction(x, trt, y, status, K.cv=5, num.replicate=1, nsteps, mincut=0.1, backfit=F, maxnumc

x	n by p matrix. The covariate matrix
trt	n vector. The treatment indicator

У	n vector. The observed follow-up time
status	n 0/1 vector. The status indicator. 1=failure and 0=alive.
K.cv	K.cv-fold cross validation
num.replicate	number of independent replications of K-fold cross validations.
nsteps	the maximum number of binary rules to be included in the index
backfit	T/F. Whether the existing split points are adjusted after including a new binary rule
mincut	the minimum cutting proportion for the binary rule at either end. It typically is between 0 and 0.2.
maxnumcut	the maximum number of binary splits per predictor
dirp	p vector. The given direction of the binary split for each of the p predictors. 0 represents "no pre-given direction"; 1 represents "(x>cut)"; -1 represents "(x <cut)". "dirp='0"' alternatively,="" any="" direction="" for="" is="" no="" of="" pre-given="" predictor.<="" represents="" td="" that="" the="" there=""></cut)".>

cv.cox.interaction implements K-fold cross-validation for the interaction Cox AIM. It estimates the partial likelihood score test statistics for testing the treatment*index interaction in the test set. It also provides pre-validated fits for each observation and pre-validated partial likelihood score test statistics. The output can be used to select the optimal number of binary rules.

Value

cv.cox.interaction returns

kmax	the optimal number of binary rules based the cross-validation
meanscore	nsteps-vector. The cross-validated partial likelihood score test statistics (significant at 0.05, if greater than 1.96) for the treatment*index interaction.
pvfit.score	nsteps-vector. The pre-validated partial likelihood score test statistics (significant at 0.05, if greater than 1.96) for the treatment*index interaction.
preval	nsteps by n matrix. Pre-validated fits for individual observation

References

L Tian and R Tibshirani Adaptive index models for marker-based risk stratification, Tech Report, available at http://www-stat.stanford.edu/~tibs/AIM.

R Tibshirani and B Efron, Pre-validation and inference in microarrays, Statist. Appl. Genet. Mol. Biol., 1:1-18, 2002.

Author(s)

Lu Tian and Robert Tibshirani

cv.cox.main

Examples

```
## generate data
set.seed(1)
n=400
p=10
x=matrix(rnorm(n*p), n, p)
z=(x[,1]<0.2)+(x[,5]>0.2)
beta=1
trt=rbinom(n,1,0.5)
fail.time=rexp(n)*exp(-beta*z*trt)
cen.time=rexp(n)*1.25
y=pmin(fail.time, cen.time)
y=round(y*10)/10
delta=1*(fail.time<cen.time)</pre>
## cross-validate the interaction Cox AIM model
a=cv.cox.interaction(x, trt, y, delta, nsteps=10, K.cv=4, num.replicate=5)
## examine the score test statistics for the interaction in the test set
par(mfrow=c(1,2))
plot(a$meanscore, type="1")
plot(a$pvfit.score, type="l")
## construct the index with the optimal number of binary rules
k.opt=a$kmax
a=cox.interaction(x, trt, y, delta, nsteps=k.opt)
print(a)
```

cv.cox.main

Cross-validation in main effect Cox AIM

Description

Cross-validation for selecting the number of binary rules in the main effect AIM with survival outcomes.

Usage

cv.cox.main(x, y, status, K.cv=5, num.replicate=1, nsteps, mincut=0.1, backfit=F, maxnumcut=1, dirp=0

Х	n by p matrix. The covariate matrix
У	n vector. The observed follow-up time
status	n 0/1 vector. The status indicator. 1=failure and 0=alive.

K.cv	K.cv-fold cross validation
num.replicate	number of independent replications of K-fold cross validations.
nsteps	the maximum number of binary rules to be included in the index
backfit	T/F. Whether the existing split points are adjusted after including new binary rules
mincut	the minimum cutting proportion for the binary rule at either end. It typically is between 0 and 0.2.
maxnumcut	the maximum number of binary splits per predictor
dirp	p vector. The given direction of the binary split for each of the p predictors. 0 represents "no pre-given direction"; 1 represents "(x>cut)"; -1 represents "(x <cut)". "dirp='0"' alternatively,="" any="" direction="" for="" is="" no="" of="" pre-given="" predictor.<="" represents="" td="" that="" the="" there=""></cut)".>

cv.cox.main implements the K-fold cross-validation for the main effect Cox AIM. It estimates the partial likelihood score test statistics in the test set for testing the association between the survival time and index constructed using training data. It also provides pre-validated fits for each observation and pre-validated partial likelihood score test statistics. The output can be used to select the optimal number of binary rules.

Value

cv.cox.main returns

kmax	the optimal number of binary rules based the cross-validation
meanscore	nsteps-vector. The cross-validated partial likelihood score test statistics (significant at 0.05, if greater than 1.96) for the association between survival time and index.
pvfit.score	nsteps-vector. The pre-validated partial likelihood score test statistics (significant at 0.05, if greater than 1.96) for the association between survival time and index.
preval	nsteps by n matrix. Pre-validated fits for individual observation

References

L Tian and R Tibshirani Adaptive index models for marker-based risk stratification, Tech Report, available at http://www-stat.stanford.edu/~tibs/AIM.

R Tibshirani and B Efron, Pre-validation and inference in microarrays, Statist. Appl. Genet. Mol. Biol., 1:1-18, 2002.

Author(s)

Lu Tian and Robert Tibshirani

cv.lm.interaction

Examples

```
## generate data
```

```
set.seed(1)
n=200
p=10
x=matrix(rnorm(n*p), n, p)
z=(x[,1]<0.2)+(x[,5]>0.2)
beta=1
fail.time=rexp(n)*exp(-beta*z)
cen.time=rexp(n)*1.25
y=pmin(fail.time, cen.time)
y=round(y*10)/10
delta=1*(fail.time<cen.time)</pre>
## cross-validate the main effect Cox AIM
a=cv.cox.main(x, y, delta, nsteps=10, K.cv=3, num.replicate=3)
## examine the test statistics in the test set
par(mfrow=c(1,2))
plot(a$meanscore, type="1")
plot(a$pvfit.score, type="l")
## construct the index with the optimal number of binary rules
k.opt=a$kmax
a=cox.main(x, y, delta, nsteps=k.opt)
print(a)
```

cv.lm.interaction Cross-validation in interaction linear AIM

Description

Cross-validation for selecting the number of binary rules in the interaction AIM with continuous outcomes

Usage

cv.lm.interaction(x, trt, y, K.cv=5, num.replicate=1, nsteps, mincut=0.1, backfit=F, maxnumcut=1, dir

x	n by p matrix. The covariate matrix
trt	n vector. The treatment indicator

У	n vector. The continuous response variable
K.cv	K.cv-fold cross validation
num.replicate	number of independent replications of K-fold cross validations
nsteps	the maximum number of binary rules to be included in the index
mincut	the minimum cutting proportion for the binary rule at either end. It typically is between 0 and 0.2.
backfit	T/F. Whether the existing split points are adjusted after including a new binary rule
maxnumcut	the maximum number of binary splits per predictor
dirp	p vector. The given direction of the binary split for each of the p predictors. 0 represents "no pre-given direction"; 1 represents "(x>cut)"; -1 represents "(x <cut)". "dirp='0"' alternatively,="" any="" direction="" for="" is="" no="" of="" pre-given="" predictor.<="" represents="" td="" that="" the="" there=""></cut)".>

cv.lm.interaction implements the K-fold cross-validation for interaction linear AIM. It estimates the score test statistics in the test set for testing the treatment*index interaction. It also provides the pre-validated fits for each observation and pre-validated score test statistics. The output can be used to select the optimal number of binary rules.

Value

cv.lm.interaction returns

kmax	the optimal number of binary rules based the cross-validation
meanscore	nsteps-vector. The cross-validated score test statistics (significant at 0.05, if greater than 1.96) for the treatment*index interaction
pvfit.score	nsteps-vector. The pre-validated score test statistics (significant at 0.05, if greater than 1.96) for the treatment*index interaction.
preval	nsteps by n matrix. Prevalidated fits for individual observation

References

L Tian and R Tibshirani Adaptive index models for marker-based risk stratification, Tech Report, available at http://www-stat.stanford.edu/~tibs/AIM.

R Tibshirani and B Efron, Pre-validation and inference in microarrays, Statist. Appl. Genet. Mol. Biol., 1:1-18, 2002.

Author(s)

Lu Tian and Robert Tibshirani

cv.lm.main

Examples

```
## generate data
set.seed(1)
n=400
p=10
x=matrix(rnorm(n*p), n, p)
z=(x[,1]<0.2)+(x[,5]>0.2)
trt=rbinom(n, 1, 0.5)
beta=1
y=trt+beta*trt*z+rnorm(n)
## cross-validate the interaction linear AIM
a=cv.lm.interaction(x, trt, y, nsteps=10, K.cv=5, num.replicate=3)
## examine the score test statistics in the test set
par(mfrow=c(1,2))
plot(a$meanscore, type="1")
plot(a$pvfit.score, type="l")
## construct the index with the optimal number of binary rules
k.opt=a$kmax
a=lm.interaction(x, y, trt, nsteps=k.opt)
print(a)
```

cv.lm.main	Cross-validation in main effect linear AIM
------------	--

Description

Cross-validation for selecting the number of binary rules in the main effect linear AIM

Usage

```
cv.lm.main(x, y, K.cv=5, num.replicate=1, nsteps, mincut=0.1, backfit=F, maxnumcut=1, dirp=0)
```

х	n by p matrix. The covariate matrix
У	n vector. The continuous response variable
K.cv	K.cv-fold cross validation
num.replicate	number of independent replications of K-fold cross validations.
nsteps	the maximum number of binary rules to be included in the index
mincut	the minimum cutting proportion for the binary rule at either end. It typically is between 0 and 0.2.

backfit	T/F. Whether the existing split points are adjusted after including new a binary rule
maxnumcut	the maximum number of binary splits per predictor
dirp	p vector. The given direction of the binary split for each of the p predictors. 0 represents "no pre-given direction"; 1 represents "(x>cut)"; -1 represents "(x <cut)". "dirp='0"' alternatively,="" any="" direction="" for="" is="" no="" of="" pre-given="" predictor.<="" represents="" td="" that="" the="" there=""></cut)".>

cv.lm.main implements the K-fold cross-validation for the main effect linear AIM. It estimates the score test statistics in the test set for testing the association between the continuous response and index constructed using training data. It also provides pre-validated fits for each observation and the pre-validated score test statistics. The output can be used to select the optimal number of binary rules.

Value

cv.lm.main returns

kmax	the optimal number of binary rules based the cross-validation
meanscore	nsteps-vector. The cross-validated score test statistics (significant at 0.05, if greater than 1.96) for the association between survival time and index.
pvfit.score	nsteps-vector. The pre-validated score test statistics (significant at 0.05, if greater than 1.96) for the association between survival time and index.
preval	nsteps by n matrix. Pre-validated fits for individual observation

References

L Tian and R Tibshirani Adaptive index models for marker-based risk stratification, Tech Report, available at http://www-stat.stanford.edu/~tibs/AIM.

R Tibshirani and B Efron, Pre-validation and inference in microarrays, Statist. Appl. Genet. Mol. Biol., 1:1-18, 2002.

Author(s)

Lu Tian and Robert Tibshirani

Examples

```
## generate data
set.seed(1)
n=400
p=10
x=matrix(rnorm(n*p), n, p)
z=(x[,1]<0.2)+(x[,5]>0.2)
beta=1
y=beta*z+rnorm(n)
```

```
## cross-validate the linear main effects AIM
a=cv.lm.main(x, y, nsteps=10, K.cv=5, num.replicate=3)
## examine score test statistics in the test set
par(mfrow=c(1,2))
plot(a$meanscore, type="1")
plot(a$pvfit.score, type="1")
## construct the index with the optimal number of binary rules
k.opt=a$kmax
a=lm.main(x, y, nsteps=k.opt)
print(a)
```

cv.logistic.interaction

Cross-validation in interaction logistic AIM

Description

Cross-validation for selecting the number of binary rules in the interaction AIM with binary outcomes.

Usage

cv.logistic.interaction(x, trt, y, K.cv=5, num.replicate=1, nsteps, mincut=0.1, backfit=F, maxnumcut=

X	n bu n matrix. The accurricte matrix
Х	n by p matrix. The covariate matrix
trt	n vector. The treatment indicator
У	n 0/1 vector. The binary response variable
K.cv	K.cv-fold cross validation
num.replicate	number of independent replications of K-fold cross validations.
nsteps	the maximum number of binary rules to be included in the index
mincut	The minimum cutting proportion for the binary rule at either end. It typically is between 0 and 0.2 .
backfit	T/F. Whether the existing split points are adjusted after including a new binary rule
maxnumcut	The maximum number of binary splits per predictor
dirp	p vector. The given direction of the binary split for each of the p predictors. 0 represents "no pre-given direction"; 1 represents " $(x>cut)$ "; -1 represents " $(x". Alternatively, "dirp=0" represents that there is no pre-given direction for any of the predictor.$
weight	a positive value. The weight given to responses: "weight=0" means that all observations are equally weighted.

cv.logistic.interaction implements the K-fold cross-validation for the interaction logistic AIM. It estimates the score test statistics in the test set for testing the treatment*index interaction. It also provides pre-validated fits for each observation and pre-validated score test statistic. The output can be used to select the optimal number of binary rules.

Value

cv.logistic.interaction returns

kmax	the optimal number of binary rules based the cross-validation
meanscore	nsteps-vector. The cross-validated score test statistics (significant at 0.05, if greater than 1.96) for the treatment*index interaction.
pvfit.score	nsteps-vector, the pre-validated score test statistics (significant at 0.05, if greater than 1.96) for the treatment*index interaction.
preval	nsteps by n matrix. Prevalidated fits for individual observation

References

L Tian and R Tibshirani Adaptive index models for marker-based risk stratification, Tech Report, available at http://www-stat.stanford.edu/~tibs/AIM.

R Tibshirani and B Efron, Pre-validation and inference in microarrays, Statist. Appl. Genet. Mol. Biol., 1:1-18, 2002.

Author(s)

Lu Tian and Robert Tibshirani

Examples

```
## generate data
set.seed(1)
n=400
p=10
x=matrix(rnorm(n*p), n, p)
z=(x[,1]<0.2)+(x[,5]>0.2)
trt=rbinom(n,1, 0.5)
beta=1
prb=1/(1+exp(trt-beta*trt*z-0.5))
y=rbinom(n,1,prb)
## cross-validate the logistic interaction AIM
a=cv.logistic.interaction(x, trt, y, nsteps=10, K.cv=4, num.replicate=5)
## examine score test statistics in the test set
par(mfrow=c(1,2))
plot(a$meanscore, type="1")
plot(a$pvfit.score, type="1")
```

cv.logistic.main

```
## construct the index with the optimal number of binary rules
k.opt=a$kmax
a=logistic.interaction(x, trt, y, nsteps=k.opt)
print(a)
```

cv.logistic.main Cross-validation in the main effect logistic AIM

Description

Cross-validation for selecting the number of binary rules in the main effect AIM with binary outcomes

Usage

cv.logistic.main(x, y, K.cv=5, num.replicate=1, nsteps, mincut=0.1, backfit=F, maxnumcut=1, dirp=0, w

Arguments

х	n by p matrix. The covariate matrix
У	n 0/1 vector. The binary response variable
K.cv	K.cv-fold cross validation
num.replicate	number of independent replications of K-fold cross validations.
nsteps	The maximum number of binary rules to be included in the index
mincut	The minimum cutting proportion for the binary rule at either end. It typically is between 0 and 0.2.
backfit	T/F. Whether the existing split points are adjusted after including a new binary rule
maxnumcut	The maximum number of binary splits per predictor
dirp	p vector. The given direction of the binary split for each of the p predictors. 0 represents "no pre-given direction"; 1 represents " $(x>cut)$ "; -1 represents " $(x". Alternatively, "dirp=0" represents that there is no pre-given direction for any of the predictor.$
weight	a positive value. The weight given to responses. "weight=0" means that all observations are equally weighted.

Details

cv.logistic.main implements the K-fold cross-validation for the main effect logistic AIM. It estimates the score test statistics in the test set for testing the association between the binary outcome and index constructed using training data. It also provides pre-validated fits for each observation and the pre-validated score test statistic. The output can be used to select the optimal number of binary rules.

Value

cv.lm.main returns

kmax	the optimal number of binary rules based the cross-validation
meanscore	nsteps-vector. The cross-validated score test statistics (significant at 0.05, if greater than 1.96) for the association between survival time and index.
pvfit.score	nsteps-vector. The pre-validated score test statistics (significant at 0.05, if greater than 1.96) for the association between survival time and index.
preval	nsteps by n matrix. Pre-validated fits for individual observation

References

L Tian and R Tibshirani Adaptive index models for marker-based risk stratification, Tech Report, available at http://www-stat.stanford.edu/~tibs/AIM.

R Tibshirani and B Efron, Pre-validation and inference in microarrays, Statist. Appl. Genet. Mol. Biol., 1:1-18, 2002.

Author(s)

Lu Tian and Robert Tibshirani

Examples

```
## generate data
set.seed(1)
n=500
p=20
x=matrix(rnorm(n*p), n, p)
z=(x[,1]<0.2)+(x[,5]>0.2)
beta=1
prb=1/(1+exp(-beta*z))
y=rbinom(n,1,prb)
## cross-validate the logistic main effects AIM
a=cv.logistic.main(x, y, nsteps=10, K.cv=5, num.replicate=3)
## examine the score test statistics in the test set
par(mfrow=c(1,2))
plot(a$meanscore, type="1")
plot(a$pvfit.score, type="l")
## construct the index with the optimal number of binary rules
k.opt=a$kmax
a=logistic.main(x, y, nsteps=k.opt)
print(a)
```

index.prediction *Predict index based on fitted AIM*

Description

Compute the index for new observations using output from lm.main, lm.interaction, logistic.main, logistic.interaction, cox.main and cox.interaction.

Usage

```
index.prediction(res, x)
```

Arguments

res	list "res" term from the outputs in lm.main, lm.interaction, logistic.main,
	logistic.interaction, cox.main and cox.interaction
х	New covariate matrix

Details

index.prediction computes the new index for given observations based on the fitted AIM

Value

index.prediction returns score which is the index for new observations with covariate matrix "x".

Author(s)

Lu Tian and Robert Tibshirani

References

Lu Tian and Robert Tibshirani (2010) Adaptive index models for marker-based risk stratification. Tech Report. Available at http://www-stat.stanford.edu/~tibs/AIM.

Examples

```
## generate data
set.seed(1)
n=400
p=10
x=matrix(rnorm(n*p), n, p)
z=(x[,1]<0.2)+(x[,5]>0.2)
trt=rbinom(n,1, 0.5)
beta=1
prb=1/(1+exp(trt-beta*trt*z-0.5))
y=rbinom(n,1,prb)
```

```
## fit the interaction logistic AIM model
a=logistic.interaction(x, trt, y, nsteps=10)
## examine the model sequence
print(a)
## compute the index based on the 2nd model of the sequence, using data x
z.prd=index.prediction(a$res[[2]],x)
## compute the index based on the 2nd model of the sequence using new data xx, and compare the result with the true
nn=10
xx=matrix(rnorm(nn*p), nn, p)
zz=(xx[,1]<0.2)+(xx[,5]>0.2)
zz.prd=index.prediction(a$res[[2]],xx)
cbind(zz, zz.prd)
```

lm.interaction Interaction linear adaptive index model

Description

Estimate adpative index model for continuous outcomes in the context of linear regression. The resulting index characterizes the interactions between the covariates and treatment.

Usage

lm.interaction(x, trt, y, nsteps=8, backfit=F, mincut=.1, maxnumcut=1, dirp=0)

Arguments

x	n by p matrix. The covariate matrix
trt	n vector. The treatment indicator
У	n vector. The continuous response variable
nsteps	the maximum number of binary rules to be included in the index
backfit	T/F. Whether the existing split points are adjusted after including a new binary rule
mincut	The minimum cutting proportion for the binary rule at either end. It typically is between 0 and 0.2.
maxnumcut	The maximum number of binary splits per predictor
dirp	p vector. The given direction of the binary split for each of the p predictors. 0 represents "no pre-given direction"; 1 represents " $(x>cut)$ "; -1 represents " $(x". Alternatively, "dirp=0" represents that there is no pre-given direction for any of the predictor.$

20

Im.interaction

Details

lm.interaction sequentially estimates a sequence of adaptive index models with up to "nsteps" terms for continuous outcomes. The aglorithm seeks the index having the strong interaction with the treatment in the linear model. The appropriate number of binary rules can be selected via K-fold cross-validation (cv.lm.interaction).

Value

lm.interaction returns maxsc, which is the observed score test statistics for the index*treatment interaction in the fitted model and res, which is a list with components

jmaa	number of predictors
cutp	split points for the binary rules
maxdir	direction of split: 1 represents "(x>cut)" and -1 represents "(x <cut)"< td=""></cut)"<>
maxsc	observed score test statistics for the interaction

Author(s)

Lu Tian and Robert Tibshirani

References

Lu Tian and Robert Tibshirani (2010) "Adaptive index models for marker-based risk stratification", Tech Report, available at http://www-stat.stanford.edu/~tibs/AIM.

Examples

```
## generate data
set.seed(1)
n=400
p=10
x=matrix(rnorm(n*p), n, p)
z=(x[,1]<0.2)+(x[,5]>0.2)
trt=rbinom(n, 1, 0.5)
beta=1
y=trt+beta*trt*z+rnorm(n)
## fit the interaction linear AIM
a=lm.interaction(x, trt, y, nsteps=10)
## examine the model sequence
print(a)
```

compute the index based on the 2nd model of the sequence, using data x
z.prd=index.prediction(a\$res[[2]],x)

compute the index based on the 2nd model of the sequence using new data xx, and compare the result with the true nn=10

lm.main

```
xx=matrix(rnorm(nn*p), nn, p)
zz=(xx[,1]<0.2)+(xx[,5]>0.2)
zz.prd=index.prediction(a$res[[2]],xx)
cbind(zz, zz.prd)
```

lm.main

Main effect linear adaptive index model

Description

Estimate adpative index model for continuous outcomes in the context of linear regression. The resulting index characterizes the main covariate effect on the continuous response.

Usage

lm.main(x, y, nsteps=8, backfit=F, mincut=.1, maxnumcut=1, dirp=0)

Arguments

х	n by p matrix. The covariate matrix
У	n vector. The continuous response variable
nsteps	the maximum number of binary rules to be included in the index
backfit	T/F. Whether the existing split points are adjusted after including a new binary rule
mincut	The minimum cutting proportion for the binary rule at either end. It typically is between 0 and 0.2.
maxnumcut	The maximum number of binary splits per predictor
dirp	p vector. The given direction of the binary split for each of the p predictors. 0 represents "no pre-given direction"; 1 represents " $(x>cut)$ "; -1 represents " $(x". Alternatively, "dirp=0" represents that there is no pre-given direction for any of the predictor.$

Details

lm.main sequentially estimates a sequence of adaptive index models with up to "nsteps" terms for continuous outcomes. The appropriate number of binary rules can be selected via K-fold cross-validation(cv.lm.main).

Value

lm.main returns maxsc, which is the score test statistics achieved in the fitted model and res, which is a list with components

jmaa	number of predictors
cutp	split points for the binary rules
maxdir	direction of split: 1 represents "(x>cut)" and -1 represents "(x <cut)"< td=""></cut)"<>
maxsc	observed score test statistics for the main effect

22

```
logistic.interaction
```

Author(s)

Lu Tian and Rob Tibshirani

References

Lu Tian and Robert Tibshirani (2010) "Adaptive index models for marker-based risk stratification", Tech Report, available at http://www-stat.stanford.edu/~tibs/AIM.

Examples

```
## generate data
set.seed(1)
n=500
p=20
x=matrix(rnorm(n*p), n, p)
z=(x[,1]<0.2)+(x[,5]>0.2)
beta=1
y=beta*z+rnorm(n)
## fit the main effects linear AIM
a=lm.main(x, y, nsteps=10)
## examine the model sequence
print(a)
## compute the index based on the 2nd model of the sequence using data x
z.prd=index.prediction(a$res[[2]],x)
## compute the index based on the 2nd model of the sequence using new data xx, and compare the result with the true
nn=10
xx=matrix(rnorm(nn*p), nn, p)
zz=(xx[,1]<0.2)+(xx[,5]>0.2)
zz.prd=index.prediction(a$res[[2]],xx)
```

logistic.interaction Interaction logistic adaptive index model

Description

cbind(zz, zz.prd)

Estimate adpative index model for binary outcomes in the context of logistic regression. The resulting index characterizes the interaction between the covariates and treatment.

Usage

```
logistic.interaction(x, trt, y, nsteps=8, mincut=.1, backfit=F, maxnumcut=1, dirp=0, weight=1)
```

Arguments

х	n by p matrix. The covariate matrix
trt	n vector. The treatment indicator
У	n 0/1 vector. The binary response variable
nsteps	the maximum number of binary rules to be included in the index
mincut	The minimum cutting proportion for the binary rule at either end. It typically is between 0 and 0.2.
backfit	T/F. Whether the existing split points are adjusted after including a new binary rule
maxnumcut	The maximum number of binary splits per predictor
dirp	p vector. The given direction of the binary split for each of the p predictors. 0 represents "no pre-given direction"; 1 represents " $(x>cut)$ "; -1 represents " $(x". Alternatively, "dirp=0" represents that there is no pre-given direction for any of the predictor.$
weight	a positive value. The weight given to responses. "weight=0" means that all observations are equally weighted.

Details

logistic.interaction sequentially estimates a sequence of adaptive index models with up to "nsteps" terms for binary outcomes. The aglorithm seeks the index having the strong interaction with the treatment in the logistic regression model. The appropriate number of binary rules can be selected via K-fold cross-validation (cv.logistic.interaction).

Value

logistic.interaction returns maxsc, which is the observed score test statistics for the index*treatment interaction in the fitted model and res, which is a list with components

jmaa	number of predictors
cutp	split points for the binary rules
maxdir	direction of split: 1 represents "(x>cut)" and -1 represents "(x <cut)"< td=""></cut)"<>
maxsc	observed score test statistics for the interaction

Author(s)

Lu Tian and Robert Tibshirani

References

Lu Tian and Robert Tibshirani (2010) "Adaptive index models for marker-based risk stratification", Tech Report, available at http://www-stat.stanford.edu/~tibs/AIM.

logistic.main

Examples

```
## generate data
set.seed(1)
n=400
p=10
x=matrix(rnorm(n*p), n, p)
z=(x[,1]<0.2)+(x[,5]>0.2)
trt=rbinom(n,1, 0.5)
beta=1
prb=1/(1+exp(trt-beta*trt*z-0.5))
y=rbinom(n,1,prb)
## fit the interaction logistic AIM
a=logistic.interaction(x, trt, y, nsteps=10)
## examine the model sequence
print(a)
## compute the index based on the 2nd model of the sequence using data x
z.prd=index.prediction(a$res[[2]],x)
## compute the index based on the 2nd model of the sequence using new data xx, and compare the result with the true
nn=10
xx=matrix(rnorm(nn*p), nn, p)
zz=(xx[,1]<0.2)+(xx[,5]>0.2)
zz.prd=index.prediction(a$res[[2]],xx)
cbind(zz, zz.prd)
```

logistic.main Main effect logistic adaptive inde
--

Description

Estimate adpative index model for binary outcomes in the context of logistic regression. The resulting index characterizes the main covariate effect on the response probability.

Usage

```
logistic.main(x, y, nsteps=8, mincut=.1, backfit=F, maxnumcut=1, dirp=0, weight=1)
```

х	n by p matrix. The covariate matrix
У	n 0/1 vector. The binary response variable
nsteps	the maximum number of binary rules to be included in the index
backfit	T/F. Whether the existing split points are adjusted after including a new binary rule

mincut	The minimum cutting proportion for the binary rule at either end. It typically is between 0 and 0.2.
maxnumcut	The maximum number of binary splits per predictor
dirp	 p vector. The given direction of the binary split for each of the p predictors. 0 represents "no pre-given direction"; 1 represents "(x>cut)"; -1 represents "(x<cut)". "dirp='0"' alternatively,="" any="" direction="" for="" is="" li="" no="" of="" pre-given="" predictor.<="" represents="" that="" the="" there=""> </cut)".>
weight	a positive number. The weight given to responses. "weight=0" means that all observations are equally weighted.

logistic.main sequentially estimates a sequence of adaptive index models with up to "nsteps" terms for binary outcomes. The appropriate number of binary rules can be selected via K-fold cross-validation(cv.logistic.main).

Value

logistic.main returns maxsc, which is the score test statistics achieved in the fitted model and res, which is a list with components

jmaa	number of predictors
cutp	split points for the binary rules
maxdir	direction of split: 1 represents "(x>cut)" and -1 represents "(x <cut)"< td=""></cut)"<>
maxsc	observed score test statistics for the main effect

Author(s)

Lu Tian and Robert Tibshirani

References

Lu Tian and Robert Tibshirani (2010) "Adaptive index models for marker-based risk stratification", Tech Report, available at http://www-stat.stanford.edu/~tibs/AIM.

Examples

```
## generate data
set.seed(1)
n=200
p=10
x=matrix(rnorm(n*p), n, p)
z=(x[,1]<0.2)+(x[,5]>0.2)
beta=1
prb=1/(1+exp(-beta*z))
y=rbinom(n,1,prb)
```

logistic.main

```
## fit logistic main effects AIM
a=logistic.main(x, y, nsteps=10)
## examine the model sequence
print(a)
```

compute the index based on the 2nd model of the sequence using data x
z.prd=index.prediction(a\$res[[2]],x)

compute the index based on the 2nd model of the sequence using new data xx, and compare the result with the true
nn=10
xx=matrix(rnorm(nn*p), nn, p)
zz=(xx[,1]<0.2)+(xx[,5]>0.2)
zz.prd=index.prediction(a\$res[[2]],xx)
cbind(zz, zz.prd)

Index

backfit.cox.interaction, 2 backfit.cox.main, 2 backfit.lm.interaction, 2 backfit.lm.main, 3 backfit.logistic.interaction, 3 backfit.logistic.main, 3

cox.interaction, 4
cox.main, 5
cv.cox.interaction, 7
cv.cox.main, 9
cv.lm.interaction, 11
cv.lm.main, 13
cv.logistic.interaction, 15
cv.logistic.main, 17

index.prediction, 19

lm.interaction, 20
lm.main, 22
logistic.interaction, 23
logistic.main, 25