Package ‘ADMMnet’

December 12, 2015
Type Package
Title Regularized Model with Selecting the Number of Non-Zeros
Version 0.1
Date 2015-12-10
Author Xiang Li, Shanghong Xie, Donglin Zeng and Yuanjia Wang
Maintainer Xiang Li xl2473@cumc.columbia.edu
Description Fit linear and cox models regularized with net (L1 and Laplacian), elasticnet (L1 and L2) or lasso (L1) penalty, and their adaptive forms, such as adaptive lasso and net adjusting for signs of linked coefficients. In addition, it treats the number of non-zero coefficients as another tuning parameter and simultaneously selects with the regularization parameter. The package uses one-step coordinate descent algorithm and runs extremely fast by taking into account the sparsity structure of coefficients.

License GPL (>=2)
Imports Rcpp (>=0.12.2)
LinkingTo Rcpp, RcppEigen
Depends Matrix (>= 1.2-3)
NeedsCompilation yes
Repository CRAN
Date/Publication 2015-12-12 09:41:54

R topics documented:

ADMMnet-package . 2
ADMMnet. 3
print.ADMMnet . 7
Index 8

Description

This package fits linear and cox models regularized with net (L1 and Laplacian), elastic-net (L1 and L2) or lasso (L1) penalty, and their adaptive forms, such as adaptive lasso and net adjusting for signs of linked coefficients. In addition, it treats the number of non-zero coefficients as another tuning parameter and simultaneously selects with the regularization parameter lambda. This is motivated by formulating L0 variable selection in ADMM form. By selecting the regularization parameter and the number of non-zeros, it shows significant improvement over the commonly used regularized methods, which depend on the regularization parameter only.

The package uses one-step coordinate descent algorithm and runs extremely fast by taking into account the sparsity structure of coefficients.

Details

Package:	ADMMnet
Type:	Package
Version:	0.1
Date:	$2015-12-10$
License:	GPL $(>=2)$

Functions: ADMMnet, print. ADMMnet

Author(s)

Xiang Li, Shanghong Xie, Donglin Zeng and Yuanjia Wang
Maintainer: Xiang Li x12473@cumc.columbia.edu

References

Boyd, S., Parikh, N., Chu, E., Peleato, B., \& Eckstein, J. (2011). Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends in Machine Learning, 3(1), 1-122.
http://dl.acm.org/citation.cfm?id=2185816
Friedman, J., Hastie, T. and Tibshirani, R. (2010). Regularization paths for generalized linear models via coordinate descent, Journal of Statistical Software, Vol. 33(1), 1.
http://www.jstatsoft.org/v33/i01/
Li, C., and Li, H. (2010). Variable selection and regression analysis for graph-structured covariates with an application to genomics. The annals of applied statistics, 4(3), 1498.
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3423227/
Sun, H., Lin, W., Feng, R., and Li, H. (2014) Network-regularized high-dimensional cox regression for analysis of genomic data, Statistica Sinica.
http://www3.stat.sinica.edu.tw/statistica/j24n3/j24n319/j24n319.html

Examples

```
### Linear model ###
set.seed(1213)
N=100;p=30;p1=5
x=matrix(rnorm(N*p),N,p)
beta=rnorm(p1)
xb=x[,1:p1]
y=rnorm(N,xb)
fiti=ADMMnet(x,y,penalty="Lasso",nlambda=10,nfolds=10) # Lasso
# attributes(fiti)
### Cox model ###
set.seed(1213)
N=100;p=30;p1=5
x=matrix(rnorm(N*p),N,p)
beta=rnorm(p1)
xb=x[,1:p1]
ty=rexp(N, exp (xb))
tcens=rbinom(n=N,prob=.3,size=1) # censoring indicator
y=cbind(time=ty,status=1-tcens)
fiti=ADMMnet(x,y,family="cox",penalty="Lasso",nlambda=10,nfolds=10) # Lasso
# attributes(fiti)
```

ADMMnet Fit a Model with Various Regularization Forms

Description

Fit a linear or cox model regularized with net (L1 and Laplacian), elastic-net (L1 and L2) or lasso (L1) penalty, and their adaptive forms, such as adaptive lasso and net adjusting for signs of linked coefficients. In addition, it treats the number of non-zero coefficients as another tuning parameter and simultaneously selects with the regularization parameter lambda. The package uses one-step coordinate descent algorithm and runs extremely fast by taking into account the sparsity structure of coefficients.

Usage

```
ADMMnet(x, y, family = c("gaussian", "cox"), penalty = c("Lasso", "Enet", "Net"),
    Omega = NULL, alpha = 1.0, lambda = NULL, nlambda = 50, rlambda = NULL,
    nfolds = 1, foldid = NULL, inzero = TRUE, adaptive = c(FALSE, TRUE), aini = NULL,
    isd = FALSE, keep.beta = FALSE, ifast = TRUE, thresh = 1e-07, maxit = 1e+05)
```


Arguments

x
y

family	type of outcome. Can be "gaussian" or "cox".
penalty	penalty type. Can choose "Net", "Enet" (elastic net) and "Lasso". For "Net" need to specify Omega; otherwises, "Enet" is performed. For penalty = "Net"

penalty

Omega
alpha
lambda
nlambda
rlambda
input matrix. Each row is an observation vector.
response variable. For family = "gaussian", y is a continuous vector. For family = "cox", y is a two-column matrix with columns named 'time' and 'status'. 'status' is a binary variable, with ' 1 ' indicating event, and ' 0 ' indicating right censored. the penalty is defined as

$$
\lambda * \alpha *\|\beta\|_{1}+(1-\alpha) / 2 *\left(\beta^{T} L \beta\right)
$$

where L is a Laplacian matrix calculated from Omega.
correlation/adjacency matrix with zero diagonal, used for penalty = "Net" to calculate Laplacian matrix.
ratio between L1 and Laplacian for "Net", or between L1 and L2 for "Enet". Default is alpha = 1.0, i.e. lasso.
a user supplied decreasing sequence. If lambda $=$ NULL, a sequency of lambda is generated based on nlambda and rlambda. Supplying a value of lambda overrides this.
nfolds
foldid
inzero logical flag for simultaneously selecting the number of non-zero coefficients with lambda. Default is inzero = TRUE.
adaptive logical flags for adaptive version. Default is adaptive $=c($ FALSE, TRUE). The first element is for adaptive on β in L1 and the second for adjusting for signs of linked coefficients in Laplacian matrix.
a user supplied initial estimate of β. It is a list including wbeta for adaptive L1 and sgn for adjusting Laplacian matrix. wbeta is the absolute value of inverse initial estimates. If aini $=$ NULL but adaptive is required, aini is generated from regularized model with penatly $=$ "Enet" and alpha $=0.0$, i.e. a ridge regression.
logical flag for outputing standardized coefficients. x is always standardized prior to fitting the model. Default is isd $=$ FALSE, returning β on the original scale.

keep. beta	logical flag for returning estimates for all lambda values. For keep. beta $=$ FALSE, only return the estimate with the minimum cross-validation value.
ifast	logical flag for efficient calculation of risk set updates for family $=" c o x "$. Default is ifast = TRUE.
thresh	convergence threshold for coordinate descent. Default value is $1 E-7$. maxit\quad Maximum number of iterations for coordinate descent. Default is $10^{\wedge} 5$.

Details

One-step coordinate descent algorithm is applied for each lambda. For family = "cox", ifast = TRUE adopts an efficient way to update risk set and sometimes the algorithm ends before all nlambda values of lambda have been evaluated. To evaluate small values of lambda, use ifast = FALSE. The two methods only affect the efficiency of algorithm, not the estimates.
x is always standardized prior to fitting the model and the estimate is returned on the original scale. For family = "gaussian", y is centered by removing its mean, so there is no intercept output.

Cross-validation is used for tuning parameters. For inzero $=$ TRUE, we further select the number of non-zero coefficients obtained from regularized model at each lambda. This is motivated by formulating L0 variable selection in ADMM form, which shows significant improvement over the commonly used regularized methods without this technique.

Value

An object with S3 class "ADMMnet".

Beta	a sparse Matrix of coefficients, stored in class "dgCMatrix".		
Beta0	coefficients after additionally tuning the number of non-zeros, for inzero = TRUE.		
fit	a data.frame containing lambda and the number of non-zero coefficients nzero. With cross-validation, additional results are reported, such as average cross- validation partial likelihood cvm and its standard error cvse, and index with '*' indicating the minimum cvm. For family = "gaussian", rsq is also reported.		
	a data.frame containing lambda, cvm and nzero based on inzero = TRUE.		
fit0	value of lambda that gives minimum cvm.		
lambda.min	value of lambda based on inzero = TRUE.		
lambda.opt			
penalty	penalty type. adaptive flag		logical flags for adaptive version (see above).
:---			
convergence flag (for internal debugging). flag = 0 means converged.			

Warning

It may terminate and return NULL.

Author(s)

Xiang Li, Shanghong Xie, Donglin Zeng and Yuanjia Wang
Maintainer: Xiang Li x12473@cumc.columbia.edu, Shanghong Xie sx2168@cumc.columbia.edu

References

Boyd, S., Parikh, N., Chu, E., Peleato, B., \& Eckstein, J. (2011). Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends in Machine Learning, 3(1), 1-122.
http://dl.acm.org/citation.cfm?id=2185816
Friedman, J., Hastie, T. and Tibshirani, R. (2010). Regularization paths for generalized linear models via coordinate descent, Journal of Statistical Software, Vol. 33(1), 1.
http://www.jstatsoft.org/v33/i01/
Li, C., and Li, H. (2010). Variable selection and regression analysis for graph-structured covariates with an application to genomics. The annals of applied statistics, 4(3), 1498.
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3423227/
Sun, H., Lin, W., Feng, R., and Li, H. (2014) Network-regularized high-dimensional cox regression for analysis of genomic data, Statistica Sinica.
http://www3.stat.sinica.edu.tw/statistica/j24n3/j24n319/j24n319.html

See Also

print.ADMMnet

Examples

```
### Linear model ###
set.seed(1213)
N=100;p=30;p1=5
x=matrix(rnorm(N*p),N,p)
beta=rnorm(p1)
xb=x[,1:p1]
y=rnorm(N,xb)
fiti=ADMMnet(x,y,penalty="Lasso",nlambda=10,nfolds=10) # Lasso
# attributes(fiti)
```

```
### Cox model ###
```


Cox model

set.seed(1213)
set.seed(1213)
N=100;p=30;p1=5
N=100;p=30;p1=5
x=matrix(rnorm(N*p),N,p)
x=matrix(rnorm(N*p),N,p)
beta=rnorm(p1)
beta=rnorm(p1)
xb=x[,1:p1]
xb=x[,1:p1]
ty=rexp(N, exp(xb))
ty=rexp(N, exp(xb))
tcens=rbinom(n=N,prob=.3,size=1) \# censoring indicator
tcens=rbinom(n=N,prob=.3,size=1) \# censoring indicator
y=cbind(time=ty,status=1-tcens)
y=cbind(time=ty,status=1-tcens)
fiti=ADMMnet(x,y,family="cox",penalty="Lasso",nlambda=10,nfolds=10) \# Lasso
fiti=ADMMnet(x,y,family="cox",penalty="Lasso",nlambda=10,nfolds=10) \# Lasso

attributes(fiti)

```
# attributes(fiti)
```

```
print.ADMMnet Print a ADMMnet Object
```


Description

Print a summary of results along the path of lambda.

Usage

```
## S3 method for class 'ADMMnet'
print(x, digits = 4, ...)
```


Arguments

$x \quad$ fitted ADMMnet object
digits significant digits in printout
... additional print arguments

Details

The performed model is printed, followed by fit and fit0 (if any) from a fitted ADMMnet object.

Value

The data frame above is silently returned

Author(s)

Xiang Li, Shanghong Xie, Donglin Zeng and Yuanjia Wang
Maintainer: Xiang Li xl2473@cumc.columbia.edu

See Also

ADMMnet

Examples

```
### Linear model ###
set.seed(1213)
N=100;p=30;p1=5
x=matrix(rnorm(N*p),N,p)
beta=rnorm(p1)
xb=x[,1:p1]
y=rnorm(N,xb)
fiti=ADMMnet(x,y,penalty="Lasso",nlambda=10,nfolds=10) # Lasso
fiti
```


Index

*Topic Number of non-zeros
ADMMnet, 3
ADMMnet-package, 2
*Topic Package
ADMMnet-package, 2
*Topic Print
print.ADMMnet, 7
*Topic Regularization
ADMMnet, 3
ADMMnet-package, 2
ADMMnet, 2, 3, 7
ADMMnet-package, 2
print.ADMMnet, 2, 6, 7

