Last updated on 2020-08-07 01:50:00 CEST.
Flavor | Version | Tinstall | Tcheck | Ttotal | Status | Flags |
---|---|---|---|---|---|---|
r-devel-linux-x86_64-debian-clang | 3.9-4 | 289.55 | 315.82 | 605.37 | OK | |
r-devel-linux-x86_64-debian-gcc | 3.9-4 | 213.92 | 231.65 | 445.57 | OK | |
r-devel-linux-x86_64-fedora-clang | 3.9-4 | 680.57 | NOTE | |||
r-devel-linux-x86_64-fedora-gcc | 3.9-4 | 568.77 | OK | |||
r-devel-windows-ix86+x86_64 | 3.9-4 | 722.00 | 528.00 | 1250.00 | NOTE | |
r-patched-linux-x86_64 | 3.9-4 | 230.31 | 313.96 | 544.27 | OK | |
r-patched-solaris-x86 | 3.9-4 | 734.90 | OK | |||
r-release-linux-x86_64 | 3.9-4 | 230.29 | 315.21 | 545.50 | OK | |
r-release-macos-x86_64 | 3.9-4 | NOTE | ||||
r-release-windows-ix86+x86_64 | 3.9-4 | 700.00 | 397.00 | 1097.00 | NOTE | |
r-oldrel-macos-x86_64 | 3.9-4 | NOTE | ||||
r-oldrel-windows-ix86+x86_64 | 3.9-4 | 448.00 | 283.00 | 731.00 | ERROR |
Version: 3.9-4
Check: installed package size
Result: NOTE
installed size is 12.4Mb
sub-directories of 1Mb or more:
R 1.9Mb
libs 8.5Mb
Flavors: r-devel-linux-x86_64-fedora-clang, r-devel-windows-ix86+x86_64, r-release-macos-x86_64, r-release-windows-ix86+x86_64, r-oldrel-macos-x86_64, r-oldrel-windows-ix86+x86_64
Version: 3.9-4
Check: dependencies in R code
Result: NOTE
No protocol specified
No protocol specified
Flavor: r-oldrel-macos-x86_64
Version: 3.9-4
Check: running examples for arch ‘i386’
Result: ERROR
Running examples in 'sirt-Ex.R' failed
The error most likely occurred in:
> ### Name: f1d.irt
> ### Title: Functional Unidimensional Item Response Model
> ### Aliases: f1d.irt
>
> ### ** Examples
>
> #############################################################################
> # EXAMPLE 1: Dataset Mathematics data.math | Exploratory multidimensional model
> #############################################################################
> data(data.math)
> dat <- ( data.math$data )[, -c(1,2) ] # select Mathematics items
>
> #****
> # Model 1: Functional unidimensional model based on original data
>
> #++ (1) estimate model with 3 factors
> mod1 <- sirt::f1d.irt( dat=dat, nfactors=3)
*** Estimate tetrachoric correlation
Iteration 1 | Approximation error = 0.27408 | Max. parameter change = 4.68309
Iteration 2 | Approximation error = 0.22335 | Max. parameter change = 1.27014
Iteration 3 | Approximation error = 0.22003 | Max. parameter change = 0.30784
Iteration 4 | Approximation error = 0.21984 | Max. parameter change = 0.07312
Iteration 5 | Approximation error = 0.21983 | Max. parameter change = 0.01753
Iteration 6 | Approximation error = 0.21983 | Max. parameter change = 0.00422
Iteration 7 | Approximation error = 0.21983 | Max. parameter change = 0.00101
Iteration 8 | Approximation error = 0.21983 | Max. parameter change = 0.00024
Iteration 9 | Approximation error = 0.21983 | Max. parameter change = 6e-05
Iteration 10 | Approximation error = 0.21983 | Max. parameter change = 1e-05
Iteration 11 | Approximation error = 0.21983 | Max. parameter change = 0
>
> #++ (2) plot results
> par(mfrow=c(1,2))
> # Intercepts
> plot( mod1$item$di0, mod1$item$di.ast, pch=16, main="Item Intercepts",
+ xlab=expression( paste( d[i], " (Unidimensional Model)" )),
+ ylab=expression( paste( d[i], " (Functional Unidimensional Model)" )))
> abline( lm(mod1$item$di.ast ~ mod1$item$di0), col=2, lty=2 )
> # Discriminations
> plot( mod1$item$ai0, mod1$item$ai.ast, pch=16, main="Item Discriminations",
+ xlab=expression( paste( a[i], " (Unidimensional Model)" )),
+ ylab=expression( paste( a[i], " (Functional Unidimensional Model)" )))
> abline( lm(mod1$item$ai.ast ~ mod1$item$ai0), col=2, lty=2 )
> par(mfrow=c(1,1))
>
> #++ (3) estimate bifactor model and Green-Yang reliability
> gy1 <- sirt::greenyang.reliability( mod1$tetra, nfactors=3 )
Reliability Estimation Based on a Nonlinear SEM
Green & Yang (2009, Psychometrika). Reliability of summed item scores
using structural equation modeling: An alternative to coefficient alpha
Omega_h for 1 factor is not meaningful, just omega_t
Warning in schmid(m, nfactors, fm, digits, rotate = rotate, n.obs = n.obs, :
Omega_h and Omega_asymptotic are not meaningful with one factor
Error in nchar(tv[1, 21]) : 'nchar()' requires a character vector
Calls: <Anonymous> ... <Anonymous> -> omegah -> omega.diagram -> multi.arrow
Execution halted
Flavor: r-oldrel-windows-ix86+x86_64
Version: 3.9-4
Check: running examples for arch ‘x64’
Result: ERROR
Running examples in 'sirt-Ex.R' failed
The error most likely occurred in:
> ### Name: f1d.irt
> ### Title: Functional Unidimensional Item Response Model
> ### Aliases: f1d.irt
>
> ### ** Examples
>
> #############################################################################
> # EXAMPLE 1: Dataset Mathematics data.math | Exploratory multidimensional model
> #############################################################################
> data(data.math)
> dat <- ( data.math$data )[, -c(1,2) ] # select Mathematics items
>
> #****
> # Model 1: Functional unidimensional model based on original data
>
> #++ (1) estimate model with 3 factors
> mod1 <- sirt::f1d.irt( dat=dat, nfactors=3)
*** Estimate tetrachoric correlation
Iteration 1 | Approximation error = 0.27408 | Max. parameter change = 4.68309
Iteration 2 | Approximation error = 0.22335 | Max. parameter change = 1.27014
Iteration 3 | Approximation error = 0.22003 | Max. parameter change = 0.30784
Iteration 4 | Approximation error = 0.21984 | Max. parameter change = 0.07312
Iteration 5 | Approximation error = 0.21983 | Max. parameter change = 0.01753
Iteration 6 | Approximation error = 0.21983 | Max. parameter change = 0.00422
Iteration 7 | Approximation error = 0.21983 | Max. parameter change = 0.00101
Iteration 8 | Approximation error = 0.21983 | Max. parameter change = 0.00024
Iteration 9 | Approximation error = 0.21983 | Max. parameter change = 6e-05
Iteration 10 | Approximation error = 0.21983 | Max. parameter change = 1e-05
Iteration 11 | Approximation error = 0.21983 | Max. parameter change = 0
>
> #++ (2) plot results
> par(mfrow=c(1,2))
> # Intercepts
> plot( mod1$item$di0, mod1$item$di.ast, pch=16, main="Item Intercepts",
+ xlab=expression( paste( d[i], " (Unidimensional Model)" )),
+ ylab=expression( paste( d[i], " (Functional Unidimensional Model)" )))
> abline( lm(mod1$item$di.ast ~ mod1$item$di0), col=2, lty=2 )
> # Discriminations
> plot( mod1$item$ai0, mod1$item$ai.ast, pch=16, main="Item Discriminations",
+ xlab=expression( paste( a[i], " (Unidimensional Model)" )),
+ ylab=expression( paste( a[i], " (Functional Unidimensional Model)" )))
> abline( lm(mod1$item$ai.ast ~ mod1$item$ai0), col=2, lty=2 )
> par(mfrow=c(1,1))
>
> #++ (3) estimate bifactor model and Green-Yang reliability
> gy1 <- sirt::greenyang.reliability( mod1$tetra, nfactors=3 )
Reliability Estimation Based on a Nonlinear SEM
Green & Yang (2009, Psychometrika). Reliability of summed item scores
using structural equation modeling: An alternative to coefficient alpha
Omega_h for 1 factor is not meaningful, just omega_t
Warning in schmid(m, nfactors, fm, digits, rotate = rotate, n.obs = n.obs, :
Omega_h and Omega_asymptotic are not meaningful with one factor
Error in nchar(tv[1, 21]) : 'nchar()' requires a character vector
Calls: <Anonymous> ... <Anonymous> -> omegah -> omega.diagram -> multi.arrow
Execution halted
Flavor: r-oldrel-windows-ix86+x86_64