CRAN Package Check Results for Package censReg

Last updated on 2020-08-07 01:49:38 CEST.

Flavor Version Tinstall Tcheck Ttotal Status Flags
r-devel-linux-x86_64-debian-clang 0.5-30 5.88 72.40 78.28 ERROR
r-devel-linux-x86_64-debian-gcc 0.5-32 4.59 62.81 67.40 OK
r-devel-linux-x86_64-fedora-clang 0.5-32 121.11 NOTE
r-devel-linux-x86_64-fedora-gcc 0.5-32 112.58 OK
r-devel-windows-ix86+x86_64 0.5-32 22.00 151.00 173.00 OK
r-patched-linux-x86_64 0.5-32 5.62 85.21 90.83 OK
r-patched-solaris-x86 0.5-32 158.50 OK
r-release-linux-x86_64 0.5-32 6.54 86.17 92.71 OK
r-release-macos-x86_64 0.5-32 OK
r-release-windows-ix86+x86_64 0.5-32 21.00 152.00 173.00 OK
r-oldrel-macos-x86_64 0.5-32 OK
r-oldrel-windows-ix86+x86_64 0.5-32 15.00 117.00 132.00 OK

Check Details

Version: 0.5-30
Check: tests
Result: ERROR
     Running 'censRegFail.R' [2s/2s]
     Comparing 'censRegFail.Rout' to 'censRegFail.Rout.save' ... OK
     Running 'censRegPanelLargerTest.R' [4s/5s]
     Comparing 'censRegPanelLargerTest.Rout' to 'censRegPanelLargerTest.Rout.save' ... OK
     Running 'censRegPanelTest.R' [2s/3s]
     Running 'censRegTest.R' [11s/13s]
     Comparing 'censRegTest.Rout' to 'censRegTest.Rout.save' ...775,782d774
    < SGA_momentum = 0
    < Adam_momentum1 = 0.9
    < Adam_momentum2 = 0.999
    < SG_patience =
    < SG_patienceStep = 1
    < SG_learningRate = 0.1
    < SG_batchSize =
    < SG_clip =
    784,785d775
    < max.rows = 20
    < max.cols = 7
    787,788d776
    < storeValues = FALSE
    < storeParameters = FALSE
    2475,2482d2462
    < SGA_momentum = 0
    < Adam_momentum1 = 0.9
    < Adam_momentum2 = 0.999
    < SG_patience =
    < SG_patienceStep = 1
    < SG_learningRate = 0.1
    < SG_batchSize =
    < SG_clip =
    2484,2485d2463
    < max.rows = 20
    < max.cols = 7
    2487,2488d2464
    < storeValues = FALSE
    < storeParameters = FALSE
    3351,3358d3326
    < SGA_momentum = 0
    < Adam_momentum1 = 0.9
    < Adam_momentum2 = 0.999
    < SG_patience =
    < SG_patienceStep = 1
    < SG_learningRate = 0.1
    < SG_batchSize =
    < SG_clip =
    3360,3361d3327
    < max.rows = 20
    < max.cols = 7
    3363,3364d3328
    < storeValues = FALSE
    < storeParameters = FALSE
    4202,4209d4165
    < SGA_momentum = 0
    < Adam_momentum1 = 0.9
    < Adam_momentum2 = 0.999
    < SG_patience =
    < SG_patienceStep = 1
    < SG_learningRate = 0.1
    < SG_batchSize =
    < SG_clip =
    4211,4212d4166
    < max.rows = 20
    < max.cols = 7
    4214,4215d4167
    < storeValues = FALSE
    < storeParameters = FALSE
    5060,5067d5011
    < SGA_momentum = 0
    < Adam_momentum1 = 0.9
    < Adam_momentum2 = 0.999
    < SG_patience =
    < SG_patienceStep = 1
    < SG_learningRate = 0.1
    < SG_batchSize =
    < SG_clip =
    5069,5070d5012
    < max.rows = 20
    < max.cols = 7
    5072,5073d5013
    < storeValues = FALSE
    < storeParameters = FALSE
    5916,5923d5855
    < SGA_momentum = 0
    < Adam_momentum1 = 0.9
    < Adam_momentum2 = 0.999
    < SG_patience =
    < SG_patienceStep = 1
    < SG_learningRate = 0.1
    < SG_batchSize =
    < SG_clip =
    5925,5926d5856
    < max.rows = 20
    < max.cols = 7
    5928,5929d5857
    < storeValues = FALSE
    < storeParameters = FALSE
    6783,6790d6710
    < SGA_momentum = 0
    < Adam_momentum1 = 0.9
    < Adam_momentum2 = 0.999
    < SG_patience =
    < SG_patienceStep = 1
    < SG_learningRate = 0.1
    < SG_batchSize =
    < SG_clip =
    6792,6793d6711
    < max.rows = 20
    < max.cols = 7
    6795,6796d6712
    < storeValues = FALSE
    < storeParameters = FALSE
    7696,7703d7611
    < SGA_momentum = 0
    < Adam_momentum1 = 0.9
    < Adam_momentum2 = 0.999
    < SG_patience =
    < SG_patienceStep = 1
    < SG_learningRate = 0.1
    < SG_batchSize =
    < SG_clip =
    7705,7706d7612
    < max.rows = 20
    < max.cols = 7
    7708,7709d7613
    < storeValues = FALSE
    < storeParameters = FALSE
    9218,9225d9121
    < SGA_momentum = 0
    < Adam_momentum1 = 0.9
    < Adam_momentum2 = 0.999
    < SG_patience =
    < SG_patienceStep = 1
    < SG_learningRate = 0.1
    < SG_batchSize =
    < SG_clip =
    9227,9228d9122
    < max.rows = 20
    < max.cols = 7
    9230,9231d9123
    < storeValues = FALSE
    < storeParameters = FALSE
    10133,10140d10024
    < SGA_momentum = 0
    < Adam_momentum1 = 0.9
    < Adam_momentum2 = 0.999
    < SG_patience =
    < SG_patienceStep = 1
    < SG_learningRate = 0.1
    < SG_batchSize =
    < SG_clip =
    10142,10143d10025
    < max.rows = 20
    < max.cols = 7
    10145,10146d10026
    < storeValues = FALSE
    < storeParameters = FALSE
    11671,11678d11550
    < SGA_momentum = 0
    < Adam_momentum1 = 0.9
    < Adam_momentum2 = 0.999
    < SG_patience =
    < SG_patienceStep = 1
    < SG_learningRate = 0.1
    < SG_batchSize =
    < SG_clip =
    11680,11681d11551
    < max.rows = 20
    < max.cols = 7
    11683,11684d11552
    < storeValues = FALSE
    < storeParameters = FALSE
    Running the tests in 'tests/censRegPanelTest.R' failed.
    Complete output:
     > library( "censReg" )
     Loading required package: maxLik
     Loading required package: miscTools
    
     Please cite the 'maxLik' package as:
     Henningsen, Arne and Toomet, Ott (2011). maxLik: A package for maximum likelihood estimation in R. Computational Statistics 26(3), 443-458. DOI 10.1007/s00180-010-0217-1.
    
     If you have questions, suggestions, or comments regarding the 'maxLik' package, please use a forum or 'tracker' at maxLik's R-Forge site:
     https://r-forge.r-project.org/projects/maxlik/
    
     Please cite the 'censReg' package as:
     Henningsen, Arne (2017). censReg: Censored Regression (Tobit) Models. R package version 0.5. http://CRAN.R-Project.org/package=censReg.
    
     If you have questions, suggestions, or comments regarding the 'censReg' package, please use a forum or 'tracker' at the R-Forge site of the 'sampleSelection' project:
     https://r-forge.r-project.org/projects/sampleselection/
     > library( "plm" )
     >
     > # load outputs that were previously produced by this script
     > saved <- new.env()
     > load( "censRegPanelTest.RData.save", envir = saved )
     >
     > options( digits = 5 )
     >
     > printAll <- function( objName, what = "print" ) {
     + cat( "Comparing new object '", objName, "' to previously saved object...",
     + sep = "" )
     + x <- get( objName )
     + if( !exists( objName, envir = saved, inherits = FALSE ) ) {
     + cat( " previously saved object not found\n" )
     + } else {
     + xSaved <- get( objName, envir = saved, inherits = FALSE )
     + if( !isTRUE( all.equal( class( x ), class( xSaved ) ) ) ) {
     + cat( " different classes:\n" )
     + cat( "new:\n" )
     + print( class( x ) )
     + cat( "saved:\n" )
     + print( class( xSaved ) )
     + } else if( !isTRUE( all.equal( names( x ), names( xSaved ) ) ) ) {
     + cat( " different names:\n" )
     + cat( "new:\n" )
     + print( names( x ) )
     + cat( "saved:\n" )
     + print( names( xSaved ) )
     + } else {
     + cat( "\n" )
     + }
     + for( n in names( x ) ) {
     + if( ! n %in% c( "code", "gradient", "iterations", "last.step",
     + "message" ) ) {
     + cat( " comparing component '", n, "' ...", sep = "" )
     + if( n == "vcov" ) {
     + tol <- 5e-1
     + } else if( n == "estimate" ) {
     + tol <- 5e-2
     + } else {
     + tol <- 5e-3
     + }
     + testRes <- all.equal( x[[ n ]], xSaved[[ n ]], tol = tol )
     + if( isTRUE( testRes ) ) {
     + cat( " OK\n" )
     + } else {
     + cat( " different\n" )
     + print( testRes )
     + cat( "new:\n" )
     + print( x[[ n ]] )
     + cat( "saved:\n" )
     + print( xSaved[[ n ]] )
     + }
     + }
     + }
     + }
     +
     + for( mName in c( "Coef", "CoefNoLs", "Vcov", "VcovNoLs",
     + "CoefSum", "CoefSumNoLs", "LogLik", "Nobs", "ExtractAIC" ) ) {
     + cat( " comparing method '", mName, "' ...", sep = "" )
     + tol <- 5e-3
     + if( mName == "Coef" ) {
     + xm <- coef( x )
     + tol <- 5e-2
     + } else if( mName == "CoefNoLs" ) {
     + xm <- coef( x, logSigma = FALSE )
     + tol <- 5e-2
     + } else if( mName == "Vcov" ) {
     + xm <- vcov( x )
     + tol <- 5e-1
     + } else if( mName == "VcovNoLs" ) {
     + xm <- vcov( x, logSigma = FALSE )
     + tol <- 5e-1
     + } else if( mName == "CoefSum" ) {
     + xm <- coef( summary( x ) )
     + tol <- 5e-2
     + } else if( mName == "CoefSumNoLs" ) {
     + xm <- coef( summary( x ), logSigma = FALSE )
     + tol <- 5e-2
     + } else if( mName == "LogLik" ) {
     + xm <- logLik( x )
     + } else if( mName == "Nobs" ) {
     + xm <- nobs( x )
     + } else if( mName == "ExtractAIC" ) {
     + xm <- extractAIC( x )
     + } else {
     + stop( "unknown value of 'mName': ", mName )
     + }
     + methodObjName <- paste0( objName, mName )
     + if( !exists( methodObjName, envir = saved, inherits = FALSE ) ) {
     + cat( " previously saved object not found\n" )
     + } else {
     + xmSaved <- get( methodObjName, envir = saved, inherits = FALSE )
     + testRes <- all.equal( xm, xmSaved, tol = tol )
     + if( isTRUE( testRes ) ) {
     + cat( " OK\n" )
     + } else {
     + cat( " different\n" )
     + print( testRes )
     + cat( "new:\n" )
     + print( xm )
     + cat( "saved:\n" )
     + print( xmSaved )
     + }
     + }
     + # assign to parent frame so that it will be included in the saved workspace
     + assign( methodObjName, xm, envir = parent.frame() )
     + }
     +
     + if( what %in% c( "print", "methods", "all" ) ) {
     + print( x, digits = 1 )
     + print( x, logSigma = FALSE , digits = 1 )
     + print( maxLik:::summary.maxLik( x ), digits = 1 )
     + print( summary( x ), digits = 1 )
     + print( summary( x ), logSigma = FALSE , digits = 1 )
     + }
     + if( what %in% c( "methods", "all" ) ) {
     + print( round( coef( x ), 2 ) )
     + print( round( coef( x, logSigma = FALSE ), 2 ) )
     + print( round( vcov( x ), 2 ) )
     + print( round( vcov( x, logSigma = FALSE ), 2 ) )
     + print( round( coef( summary( x ) ), 2 ) )
     + print( round( coef( summary( x ), logSigma = FALSE ), 2 ) )
     + try( margEff( x ) )
     + print( logLik( x ) )
     + print( nobs( x ) )
     + print( extractAIC( x ) )
     + }
     +
     + if( what == "all" ) {
     + for( n in names( x ) ) {
     + cat( "$", n, "\n", sep = "" )
     + if( n %in% c( "estimate", "gradientObs" ) ) {
     + print( round( x[[ n ]], 2 ) )
     + } else if( n %in% c( "hessian" ) ) {
     + print( round( x[[ n ]], 1 ) )
     + } else if( n %in% c( "gradient" ) ) {
     + } else if( ! n %in% c( "last.step" ) ) {
     + print( x[[ n ]] )
     + }
     + cat( "\n" )
     + }
     + cat( "class\n" )
     + print( class( x ) )
     + }
     + }
     >
     > nId <- 15
     > nTime <- 4
     >
     > set.seed( 123 )
     > pData <- data.frame(
     + id = rep( paste( "F", 1:nId, sep = "_" ), each = nTime ),
     + time = rep( 1980 + 1:nTime, nId ) )
     > pData$ui <- rep( rnorm( nId ), each = nTime )
     > pData$x1 <- rnorm( nId * nTime )
     > pData$x2 <- runif( nId * nTime )
     > pData$ys <- -1 + pData$ui + 2 * pData$x1 + 3 * pData$x2 + rnorm( nId * nTime )
     > pData$y <- ifelse( pData$ys > 0, pData$ys, 0 )
     > nData <- pData # save data set without information on panel structure
     > pData <- pdata.frame( pData, c( "id", "time" ) )
     >
     >
     > ## Newton-Raphson method
     > randEff <- censReg( y ~ x1 + x2, data = pData )
     > printAll( "randEff" )
     Comparing new object 'randEff' to previously saved object...
     comparing component 'maximum' ... OK
     comparing component 'estimate' ... OK
     comparing component 'hessian' ... OK
     comparing component 'fixed' ... OK
     comparing component 'type' ... OK
     comparing component 'gradientObs' ... OK
     comparing component 'control' ... different
     [1] "Attributes: < Names: 20 string mismatches >"
     [2] "Attributes: < Length mismatch: comparison on first 20 components >"
     [3] "Attributes: < Component 1: Modes: numeric, character >"
     [4] "Attributes: < Component 1: Attributes: < target is NULL, current is list > >"
     [5] "Attributes: < Component 1: target is numeric, current is character >"
     [6] "Attributes: < Component 2: Mean relative difference: 1 >"
     [7] "Attributes: < Component 3: Mean absolute difference: 150 >"
     [8] "Attributes: < Component 4: Modes of target, current: name, numeric >"
     [9] "Attributes: < Component 4: target, current do not match when deparsed >"
     [10] "Attributes: < Component 5: Modes of target, current: name, numeric >"
     [11] "Attributes: < Component 5: target, current do not match when deparsed >"
     [12] "Attributes: < Component 6: Mean relative difference: 19 >"
     [13] "Attributes: < Component 7: Modes of target, current: name, numeric >"
     [14] "Attributes: < Component 7: target, current do not match when deparsed >"
     [15] "Attributes: < Component 9: Modes: character, numeric >"
     [16] "Attributes: < Component 9: Attributes: < Modes: list, NULL > >"
     [17] "Attributes: < Component 9: Attributes: < Lengths: 1, 0 > >"
     [18] "Attributes: < Component 9: Attributes: < names for target but not for current > >"
     [19] "Attributes: < Component 9: Attributes: < current is not list-like > >"
     [20] "Attributes: < Component 9: target is character, current is numeric >"
     [21] "Attributes: < Component 10: Mean absolute difference: 2 >"
     [22] "Attributes: < Component 11: Mean relative difference: 1 >"
     [23] "Attributes: < Component 12: Modes: numeric, character >"
     [24] "Attributes: < Component 12: target is numeric, current is character >"
     [25] "Attributes: < Component 13: Mean relative difference: 1 >"
     [26] "Attributes: < Component 14: Mean relative difference: 1 >"
     [27] "Attributes: < Component 15: Modes: numeric, name >"
     [28] "Attributes: < Component 15: target is numeric, current is name >"
     [29] "Attributes: < Component 16: Mean relative difference: 16.571 >"
     [30] "Attributes: < Component 17: Mean relative difference: 0.5 >"
     [31] "Attributes: < Component 18: Mean relative difference: 9 >"
     [32] "Attributes: < Component 19: Mean relative difference: 1 >"
     [33] "Attributes: < Component 20: Mean relative difference: 1 >"
     new:
     A 'MaxControl' object with slots:
     tol = 1e-08
     reltol = 1.4901e-08
     gradtol = 1e-06
     steptol = 1e-10
     lambdatol = 1e-06
     qrtol = 1e-10
     qac = stephalving
     marquardt_lambda0 = 0.01
     marquardt_lambdaStep = 2
     marquardt_maxLambda = 1e+12
     nm_alpha = 1
     nm_beta = 0.5
     nm_gamma = 2
     sann_cand = <default Gaussian Markov kernel>
     sann_temp = 10
     sann_tmax = 10
     sann_randomSeed = 123
     SGA_momentum = 0
     Adam_momentum1 = 0.9
     Adam_momentum2 = 0.999
     SG_patience =
     SG_patienceStep = 1
     SG_learningRate = 0.1
     SG_batchSize =
     SG_clip =
     iterlim = 150
     max.rows = 20
     max.cols = 7
     printLevel = 0
     storeValues = FALSE
     storeParameters = FALSE
     saved:
     A 'MaxControl' object with slots:
     tol = 1e-08
     reltol = 1.4901e-08
     gradtol = 1e-06
     steptol = 1e-10
     lambdatol = 1e-06
     qrtol = 1e-10
     qac = stephalving
     marquardt_lambda0 = 0.01
     marquardt_lambdaStep = 2
     marquardt_maxLambda = 1e+12
     nm_alpha = 1
     nm_beta = 0.5
     nm_gamma = 2
     sann_cand = <default Gaussian Markov kernel>
     sann_temp = 10
     sann_tmax = 10
     sann_randomSeed = 123
     Error in slot(object, s) :
     no slot of name "SGA_momentum" for this object of class "MaxControl"
     Calls: printAll ... print.default -> <Anonymous> -> <Anonymous> -> cat -> slot
     Execution halted
Flavor: r-devel-linux-x86_64-debian-clang

Version: 0.5-32
Check: Rd cross-references
Result: NOTE
    Undeclared package ‘sampleSelection’ in Rd xrefs
Flavor: r-devel-linux-x86_64-fedora-clang