Last updated on 2020-08-07 01:49:38 CEST.
Flavor | Version | Tinstall | Tcheck | Ttotal | Status | Flags |
---|---|---|---|---|---|---|
r-devel-linux-x86_64-debian-clang | 1.0.0 | 4.49 | 249.90 | 254.39 | OK | |
r-devel-linux-x86_64-debian-gcc | 1.0.0 | 3.82 | 201.11 | 204.93 | OK | |
r-devel-linux-x86_64-fedora-clang | 1.0.0 | 334.25 | NOTE | |||
r-devel-linux-x86_64-fedora-gcc | 1.0.0 | 312.88 | NOTE | |||
r-devel-windows-ix86+x86_64 | 1.0.0 | 13.00 | 222.00 | 235.00 | OK | |
r-patched-linux-x86_64 | 1.0.0 | 4.73 | 209.87 | 214.60 | ERROR | |
r-patched-solaris-x86 | 1.0.0 | 175.70 | NOTE | |||
r-release-linux-x86_64 | 1.0.0 | 4.22 | 245.67 | 249.89 | OK | |
r-release-macos-x86_64 | 1.0.0 | NOTE | ||||
r-release-windows-ix86+x86_64 | 1.0.0 | 12.00 | 241.00 | 253.00 | OK | |
r-oldrel-macos-x86_64 | 1.0.0 | NOTE | ||||
r-oldrel-windows-ix86+x86_64 | 1.0.0 | 8.00 | 219.00 | 227.00 | OK |
Version: 1.0.0
Check: dependencies in R code
Result: NOTE
Namespace in Imports field not imported from: ‘prettydoc’
All declared Imports should be used.
Flavors: r-devel-linux-x86_64-fedora-clang, r-devel-linux-x86_64-fedora-gcc, r-patched-solaris-x86, r-release-macos-x86_64, r-oldrel-macos-x86_64
Version: 1.0.0
Check: tests
Result: ERROR
Running ‘CBDA_test_training.R’ [174s/196s]
Running the tests in ‘tests/CBDA_test_training.R’ failed.
Complete output:
> # Attach the CBDA library
> suppressPackageStartupMessages(library(CBDA))
> suppressPackageStartupMessages(library(randomForest ))
> suppressPackageStartupMessages(library(glmnet ))
> suppressPackageStartupMessages(library(SuperLearner))
> suppressPackageStartupMessages(library(bartMachine))
>
> library(CBDA, quietly = TRUE, verbose = FALSE)
> CBDA_initialization()
package missForest already installed
package stats already installed
package utils already installed
package prettydoc already installed
package foreach already installed
package SuperLearner already installed
package knockoff already installed
package caret already installed
package smotefamily already installed
package parallel already installed
package doParallel already installed
package glmnet already installed
Loading required package: prettydoc
Loading required package: knockoff
Loading required package: caret
Loading required package: lattice
Loading required package: ggplot2
Attaching package: 'ggplot2'
The following object is masked from 'package:randomForest':
margin
Loading required package: smotefamily
Loading required package: parallel
Loading required package: doParallel
missForest stats utils prettydoc foreach SuperLearner
TRUE TRUE TRUE TRUE TRUE TRUE
knockoff caret smotefamily parallel doParallel glmnet
TRUE TRUE TRUE TRUE TRUE TRUE
>
> # Set the specs for the synthetic dataset to be tested
> n = 300 # number of observations
> p = 100 # number of variables
>
> # Generate a nxp matrix of IID variables (e.g., ~N(0,1))
> X1 = matrix(rnorm(n*p), nrow=n, ncol=p)
>
> # Setting the nonzero variables - signal variables
> #nonzero=c(1,100,200,300,400,500,600,700,800,900)
> nonzero=c(10,20,30,40,50,60,70,80,90,100)
>
> # Set the signal amplitude (for noise level = 1)
> amplitude = 10
>
> # Allocate the nonzero coefficients in the correct places
> beta = amplitude * (1:p %in% nonzero)
>
> # Generate a linear model with a bias (e.g., white noise ~N(0,1))
> ztemp <- function() X1 %*% beta + rnorm(n)
> z = ztemp()
>
> # Pass it through an inv-logit function to
> # generate the Bernoulli response variable Ytemp
> pr = 1/(1+exp(-z))
> Ytemp = rbinom(n,1,pr)
> X2 <- cbind(Ytemp,X1)
>
> dataset_file ="Binomial_dataset.txt"
>
> # Save the synthetic dataset
> a <- tempdir()
> write.table(X2, file = file.path(a, dataset_file), sep=",")
>
> # Load the Synthetic dataset
> #Data = read.csv(paste0(file.path(a),'/',dataset_file),header = TRUE)
> Data = read.csv(file.path(a, dataset_file),header = TRUE)
> Ytemp <- Data[,1] # set the outcome
> original_names_Data <- names(Data)
> cols_to_eliminate=1
> Xtemp <- Data[-cols_to_eliminate] # set the matrix X of features/covariates
> original_names_Xtemp <- names(Xtemp)
>
> # Add more wrappers/algorithms to the SuperLearner ensemble predictor
> # It can be commented out if only the default set of algorithms are used,
> # e.g., algorithm_list = c("SL.glm","SL.xgboost","SL.glmnet","SL.svm",
> # "SL.randomForest","SL.bartMachine")
> # This defines a "new" wrapper, based on the default SL.glmnet
> SL.glmnet.0.75 <- function(..., alpha = 0.75,family="binomial"){
+ SL.glmnet(..., alpha = alpha, family = family)}
>
> # Using Support Vector Machine and the new Glmnet wrapper above
> #test_example <- c("SL.glmnet","SL.glmnet.0.75")
> test_example <- c("SL.glmnet","SL.svm","SL.randomForest","SL.bartMachine")
>
> ## SINGLE CORE EXAMPLE - TRAINING/LEARNING ONLY
> CBDA_singlecore_training <- CBDA.training(Ytemp , Xtemp , M = 8 ,
+ Nrow_min = 60, Nrow_max = 80,
+ top = 6, max_covs = 6 , min_covs = 3,
+ algorithm_list = test_example , label = "SINGLE_CORE" ,
+ workspace_directory = a)
Subsampling size = 8
Case Sampling Range - CSR (%) = 60_80 %
Feature Sampling Range - FSR (%) = 5_15 %
Learning/Training steps initiated successfully !!
Loading required namespace: e1071
Completion %
12.5
Completion %
25
Completion %
37.5
Completion %
50
Completion %
62.5
Completion %
75
Completion %
87.5
Error in sample.int(length(x), size, replace, prob) :
cannot take a sample larger than the population when 'replace = FALSE'
Calls: CBDA.training
Execution halted
Flavor: r-patched-linux-x86_64