
News
The Newsletter of the R Project Volume 1/3, September 2001

Editorial
by Friedrich Leisch

While our colleagues in the southern hemisphere are
looking forward to the last weeks of the academic
year and a well deserved summer break, teaching
started again in the northern half of our world, and
again we had a new bug-fix release of R ready to pass
to students at the beginning of the semester.

Coffee break talks at this summer’s conference
season showed the growing popularity of R at uni-
versities very nicely to me: You start talking to peo-
ple you never met before and one of the first ques-
tions is usually about each other’s research interests.
Until last year I always had to explain what R is
after responding “Hacking R”, because nine out of
ten people at a statistics conference had never heard
about it.

This year things were different. I participated in
a conference on Mixture Models in Hamburg, Ger-
many. The crowd there were mostly statisticians, us-
ing computers heavily for their work, but most of
them are not interested in statistical computing per
se as a research area. Nevertheless, every other one
at least knew what R is, many use it actively or at
least their students do so, several talks mentioned R

as the computational platform used for the examples
(and in several others design and layout of graphics
looked very familiar to me).

This issue of R News has both articles introduc-
ing R packages and articles dealing with more com-
putational aspects: The former include articles on
econometrics, spatial data, machine learning, and ro-
bust statistics; the latter articles on Mac OS X, par-
allel and object-oriented programming, dynamic ac-
cess to compiled code, and graphical user interfaces.
The programmer’s niche column is guest-edited by
Thomas Lumley and deals with the advantages and
disadvantages of macros.

The next issue of R News scheduled for the end of
2001 will have an emphasis on applying R in medi-
cal statistics. In the future we would like to see one
or two issues per year to have a main focus, where 3
or 4 articles deal with related topics. Suggestions for
focus topics are welcome, especially if accompanied
by prospective articles. Please contact the editors for
details.

Friedrich Leisch
Technische Universität Wien, Austria
Friedrich.Leisch@ci.tuwien.ac.at

Contents of this issue:

Editorial . 1
Porting R to Darwin/X11 and Mac OS X 2
RPVM: Cluster Statistical Computing in R . . . 4
strucchange: Testing for Structural Change in

Linear Regression Relationships 8
Programmer’s Niche: Macros in R 11
More on Spatial Data Analysis 13

Object-Oriented Programming in R 17
In Search of C/C++ & FORTRAN Routines . . 20
Support Vector Machines 23
A Primer on the R-Tcl/Tk Package 27
wle: A Package for Robust Statistics using

Weighted Likelihood 32
Changes on CRAN 38
Changes in R . 40

mailto:Friedrich.Leisch@ci.tuwien.ac.at

Vol. 1/3, September 2001 2

Porting R to Darwin/X11 and Mac OS X
by Jan de Leeuw

Mac OS X

Earlier this year Apple officially released OS X,
its new operating system. OS X now comes pre-
installed on all Macs, although by default you still
boot into MacOS 9.x. But soon OS X will be the de-
fault.

OS X is not an incremental upgrade, it is a com-
pletely new operating system. It has a layered ar-
chitecture. The lowest layer is Darwin, which con-
sists of the Mach 3.0 kernel and a version of BSD 4.4.
Thus OS X is, among other things, a certified and
POSIX compliant Unix. Darwin is (certified) Open
Source, and it can be downloaded from the Apple
servers. One surprising consequence of the above
is that soon Apple will be the largest distributor of
Unix, and that soon OS X will be the most popular
Unix on the planet, although most users will be bliss-
fully unaware of this fact.

On top of Darwin there is a lot of proprietary
software, used to generate the user interface com-
ponents. The main libraries are Apple’s version
of OpenGL for 3D, QuickTime for multimedia, and
Quartz for printing and screen drawing. Quartz re-
places Display Postscript in earlier versions of the
system, using PDF as its native format.

Application environments

On top of the three graphics engines are no less than
five application environments that developers can
use.

Classic For the foreseeable future it will remain pos-
sible to boot into OS 9.x, and to run older Mac-
intosh programs in the Classic environment
with OS X, which emulates an older Macintosh
with OS 9.x. Some of the more powerful pro-
grams for the Mac, such as Office and Photo-
shop and SPSS, still have to run in Classic, al-
though Carbon versions have been announced.

Carbon The classical Mac Toolbox API has been
cleaned up and extended. This now makes it
possible to write applications that run natively
on both OS 9.x and OS X. Netscape, MSIE, R,
Stata, AppleWorks have all been carbonized. It
is of some interest, however, that there are two
types of Carbon applications. Those that can
run on OS 9.x are under the control of the Code
Fragment Manager and use the PEF executable
format. If run on OS X, they run on top of a
layer that translates CFM/PEF to dyld/Mach-
O. Mach-O is the native format for OS X, and

program control is exercised by the dynamic
linker dyld. The other type of Carbon applica-
tion is dyld/Mach-O, which means it does not
run on OS 9.x.

Cocoa This is the native OS X API, inherited from its
NeXTStep and Rhapsody parents and grand-
parents. Applications using these interfaces
use optimally the capacities of the OS. Cocoa
applications are still comparatively rare, be-
cause they have to be written from scratch, ei-
ther in Objective-C or in Java. But there are
already fine browsers, spreadsheets, editors,
graphic tools, and TeX systems in Cocoa.

Java The JDK (including runtime, JIT compiler,
AWT, and Swing) is integrated with OS X, and
Java libraries are available to write Cocoa ap-
plications. Swing, of course, has the native OS
X look-and-feel. Of course anything you write
in Java on OS X is (at least in principle) com-
pletely portable.

BSD Darwin comes with optimized Apple versions
of the GNU tools. Since the application en-
vironment for Darwin is FreeBSD, porting of
Unix programs is a breeze. It can be made even
easier by using Fink (see below). In particular,
it is trivial to install an X server, in fact a com-
plete X11R6, using Xfree86, and a large number
of different window managers. There are ports
to Darwin of all of gnome, including the Gimp
and Guppi, of various Matlab like programs
such as octave, scilab, yorick, and of all the
standard X graphic tools such as xfig, tgif, xpdf,
xdvi, xv, ghostview, gnuplot, grace, xgobi.

User experience

The Mac OS X user, of course, will not notice any of
these under-the-hood changes. The obvious change
is Aqua, the new look-and-feel, often described as
“lickable”. Windows and the menu bar look differ-
ent, there is a “dock”, and so on. The Aqua interface
is automatic for all Cocoa and Carbon applications
that use Quartz to draw to the screen.

The user will notice greatly increased stability of
the OS. This is mostly provided by the Mach ker-
nel, which provides protected and advanced virtual
memory, as well as preemptive and cooperative mul-
titasking and threading. OS X will run forever with-
out crashing, and applications that crash don’t take
down the OS with them any more. The need to re-
boot has virtually disappeared.

Moreover, OS X promises speed, although not in
the early versions. The OS is written to take full

R News ISSN 1609-3631

Vol. 1/3, September 2001 3

advantage of multiprocessing, and multiprocessor
Macs are becoming more and more common. Ru-
mor has it that the G5 will even be multicore. Many
graphics programs, including Quartz and OpenGL,
are optimized for the Altivec vector processor on the
G4 chip. Recent builds of the OS show great speed.

Finally, remember that OS X is first and foremost
a Unix, i.e. a multitasking and multiuser OS. You
have to login, you can allow others to login, and peo-
ple can login remotely. Although you can use the sys-
tem as a dedicated single-person desktop OS, that is
only one of its uses. There are many people who log
into the Cube in my office.

Porting problems

Darwin/X11 programmers must take into account
some important differences with the more usual ELF
based Unix systems. Most of those are due to the
Mach heritage. All these peculiarities had to be taken
into account in building R, and in modifying the
autoconf configure files.

In the first place, Darwin maintains a strict dis-
tinction between two types of shared libraries. There
are bundles, which can be loaded at runtime into an
application using the appropriate dynamic loading
interface. Also, there are dynamic libraries, that are
used at link time when building applications or other
libraries. Different compiler and linker switches are
needed to build the two different types of libraries.
For ELF systems the two types coincide. Building R
as a shared (dynamic) library, which can be linked
against other application programs, will be available
in R-1.4.0 and does not work yet in R-1.3.1. The mod-
ules and packages which use bundles of object code
that are loaded at runtime work fine.

Second, the Darwin dynamic linker dyld is very
intolerant, and does not allow multiply defined sym-
bols at all. The static linker is much more tolerant.
Thus one must make sure not to include a file with
definitions more than once, and so on.

Third, the API for dynamic loading is very differ-
ent from the more usual dlopen() interface in ELF
systems.

And finally, some of the necessary components
needed for building R (X11R6, a Fortran compiler)
are missing from the current version of Darwin.

Fink

The task of porting BSD and X11 software has been
made easy by the existence of Fink (see http://
fink.sourceforge.net). This is a package manage-
ment system for Darwin setup by Christoph Pfis-
terer, and maintained by a group of volunteers.
There are now more than 300 packages in Fink, and
you can say fink install foo to download, con-
figure, compile, and install package foo, and then

fink update foo to update the package when it has
changed in the Fink central location. Of course such
package management systems exist for Linux, De-
bian, FreeBSD (and actually for R and Stata), but it
is good to have one for Darwin as well.

What do you need from Fink for building a Dar-
win version of R? In the first place Xfree86. The
Darwin version has been modified with a Cocoa
front end called XDarwin that let’s you choose be-
tween full-screen and rootless mode, where in root-
less mode the X11 windows exist on the same desk-
top as the Aqua windows of the OS X Finder. Second,
you can install all of gnome, which can be used for
the (experimental and unsupported) gnome module
in R. Third, Fink has ATLAS, an optimized BLAS li-
brary for OS X. Fourth, there is dlcompat. This wraps
the dyld API for dynamic loading in the familiar ELF
dlopen API, so you can continue to use the standard
calls in the R sources. Fifth, there is tcl/tk, for the
tcltk package in R. And finally there are various
other libraries, which are either not in Darwin or are
more recent versions. Examples are libjpeg, libpng,
libz, and libreadline. There is also a g77 in Fink,
but it does not work with the configure scripts in R,
so all our builds so far use f2c.

In fact, R-1.3.1 base and recommended are both in
Fink. The info scripts and patch files are maintained
by Jeffrey Whitaker (jsw@cdc.noaa.gov). This pro-
vides you with yet another way to install R on your
Mac.

R

Combining all this new knowledge makes it possi-
ble to describe what we have on CRAN and what
we still need. We have a CFM/PEF Carbon version
of R, made by Stefano Iacus, and described in the
first issue of R-News. It uses a Carbon version of the
Macintosh QuickDraw driver. We also have a Dar-
win/X11 version, with support for Tcl/Tk, GNOME,
and ATLAS, maintained by Jan de Leeuw (me).

The Carbon version runs on both OS 9.x and OS
X, but we have seen that it needs a dyld/Mach-O
layer to run on OS X, so it’s not really native. There is
no support in the Carbon version for Tcl/Tk, and the
internet-based R package update and install system
is not available. There are no free tools to build this
version in OS X; you have to build it in OS 9.x, or buy
an IDE from Metrowerks or Absoft.

The Darwin/X11 version is dyld/Mach-O, and is
consequently native in that sense, but it does not use
the native Quartz library and Cocoa interfaces at all.
If you run the X server in full-screen mode, your Mac
looks just like a Linux or Solaris machine. This is
somewhat disappointing for Mac people.

There are various ways in which the current sit-
uation can be improved. Stefano is working on a
Quartz driver for the graphics. It would be useful

R News ISSN 1609-3631

http://fink.sourceforge.net
http://fink.sourceforge.net
mailto:jsw@cdc.noaa.gov

Vol. 1/3, September 2001 4

to have a dyld/Mach-O Carbon version, truly native
to OS X. The Quartz driver also brings us closer to
a Cocoa version of R, which could be implemented
initially as a Cocoa shell around the Darwin version
of R.

Much will depend on the reception of OS X, and
on how many Mac users will switch from 9.x to X.
If your hardware supports OS X, I think switching is

a no-brainer, especially if you program, develop, or
compute. As I have indicated above, the possibilities
are endless.

Jan de Leeuw
University of California at Los Angeles
deleeuw@stat.ucla.edu

RPVM: Cluster Statistical Computing in R
by Michael Na Li and A.J. Rossini

rpvm is a wrapper for the Parallel Virtual Machine
(PVM) API. PVM (Geist et al., 1994) is one of the orig-
inal APIs for extending an application over a set of
processors in a parallel computer or over machines
in a local area cluster. We discuss the PVM API, how
it is implemented in R, and provide examples for its
use. rpvm provides a quick means for prototyping
parallel statistical applications as well as for provid-
ing a front-end for data analysis from legacy PVM ap-
plications.

Introduction

PVM was developed at Oak Ridge National Laborato-
ries and the University of Tennessee starting in 1989.
It is a de facto standard for distributed computing
designed especially for heterogeneous networks of
computers. The notion of “virtual machine” makes
the network appear logically to the user as a single
large parallel computer. It provides a mechanism for
specifying the allocation of tasks to specific proces-
sors or machines, both at the start of the program as
well as dynamically during runtime. There are rou-
tines for the two main types of intertask communi-
cation: point-to-point communication between tasks
(including broadcasting) and collective communica-
tion within a group of tasks.

The primary message passing library competi-
tor to PVM is MPI (Message Passing Interface). The
biggest advantage of PVM over MPI is its flexibility
(Geist et al., 1996). PVM can be run on an existing
network consisting of different platforms (almost all
platforms are supported, including Microsoft Win-
dows 98/NT/2000 systems). Tasks can be dynam-
ically spawned, which is not supported in MPI-1
upon which most MPI implementations are based.
Hosts can be dynamically added or deleted from the
virtual machine, providing fault tolerance. There are
also a visualization tool, xpvm, and numerous debug-
ging systems. MPI has advantages of speed as well
as being an actual standard. However, for prototyp-

ing and research, it isn’t clear that either of these are
critical features.

PVM has been successfully applied to many appli-
cations, such as molecular dynamics, semiconductor
device simulation, linear algebra (ScaLAPACK, NAG
PVM library), etc. It also has great potential in statis-
tical computing, including optimization (expensive
or large number of function evaluations; likelihood
computations), simulations (resampling, including
bootstrap, jackknife, and MCMC algorithms; integra-
tion), enumeration (permutation and network algo-
rithms), solution of systems of equations (linear, PDE,
finite-element, CFD).

This article presents a new R package, rpvm, that
provides an interface to PVM from one of the most
powerful and flexible statistical programming envi-
ronments. With rpvm, the R user can invoke either
executable programs written in compiled language
such as C, C++ or FORTRAN as child tasks or spawn
separate R processes. It is also possible to spawn R
processes from other programs such as Python, C,
FORTRAN, or C++. Therefore rpvm is ideal for pro-
totyping parallel statistical algorithms and for split-
ting up large memory problems. Using rpvm, statis-
ticians will be able to prototype difficult statistical
computations easily in parallel. The rest of the article
which follows looks at installation, features, a pro-
gramming example, and concludes with issues for
on-going development.

Installation

PVM source code can be downloaded from http:
//www.netlib.org/pvm3/pvm3.4.3.tgz. Binary dis-
tributions exist for many Linux distributions (see in-
dividual distributions) as well as for Microsoft Win-
dows NT/2000/XP. However, the Windows imple-
mentation of rpvm is untried (it is possible to com-
municate with C or FORTRAN processes running
under Microsoft Windows). The following proce-
dures refer to UNIX-like environments.

R News ISSN 1609-3631

mailto:deleeuw@stat.ucla.edu
http://www.netlib.org/pvm3/pvm3.4.3.tgz
http://www.netlib.org/pvm3/pvm3.4.3.tgz

Vol. 1/3, September 2001 5

Installing PVM

Compiling the source code: Installation from the
source is straightforward. After untarring the source
package, set the environment variable PVM_ROOT
to where pvm resides, for example ‘$HOME/pvm3’
or ‘/usr/local/pvm3’. Then type ‘make’ under the
‘$PVM ROOT’ directory. The libraries and executa-
bles are installed in ‘$PVM ROOT/lib/$PVM ARCH’,
where PVM_ARCH is the host architecture name, e.g.,
‘LINUX’ or ‘SUN4SOL2’. This way one can build PVM
for different architectures under the same source tree.

PVM comes with plenty of examples, see the PVM
documentation on how to build and run these.

Setting up PVM environment: Before running
PVM, some environment variables need to be set. For
example, if you use a C shell, put the following in the
‘$HOME/.cshrc’ file of each host,

setenv PVM_ROOT $HOME/pvm3
setenv PVM_ARCH ‘$PVM_ROOT/lib/pvmgetarch‘
set path = ($path $PVM_ROOT/lib \

$PVM_ROOT/lib/$PVM_ARCH \
$PVM_ROOT/bin/$PVM_ARCH)

PVM uses rsh by default to initialize communica-
tion between hosts. To use ssh (Secure Shell) instead,
which is necessary for many networks, define

setenv PVM_RSH ‘which ssh‘

You can use public key authentication to avoid typ-
ing passwords; see the SSH documentation on how
to do this.

Setting up RPVM

rpvm uses a shell script ‘$R LIBS/rpvm/slaveR.sh’
to start a slave R process. After installing rpvm,
copy this file to ‘$PVM ROOT/bin/$PVM ARCH’ so
it can be found by the pvm daemon. The path to the
slave R script and the slave output file can either be
specified through environment variables RSLAVEDIR,
RSLAVEOUT or by passing corresponding arguments
to the spawning function. The first method can
be used when different paths are needed for differ-
ent host. When the hosts use a shared file system,
the second method provides more flexibility. If nei-
ther are set, their default values ‘$R LIBS/rpvm’ and
‘$TMPDIR’ are used.

A sample RPVM session

Below is a sample rpvm session. We start the virtual
machine by using a host file, ‘$HOME/.xpvm hosts’,

> library(rpvm)

> hostfile <-

+ file.path(Sys.getenv("HOME"), ".xpvm_hosts")

> .PVM.start.pvmd (hostfile)

libpvm [t40001]: pvm_addhosts():

Already in progress

libpvm [t40001]: pvm_addhosts():

Already in progress

[1] 0

> .PVM.config()

There are 2 hosts and 2 architectures.

host.id name arch speed

1 262144 abacus LINUX 1000

2 524288 atlas SUN4SOL2 1000

A host file is a simple text file specifying the host
names of the computers to be added to the virtual
machine. A simple example is shown below.

* ep=$HOME/bin/$PVM_ARCH

atlas

abacus

where * defines a global option for all hosts.
ep=option tells the execution path in which we want
pvm daemon to look for executables. For more infor-
mation, please refer to the PVM documentation.

In directory ‘$R LIBS/rpvm/demo’, there is a test
script ‘pvm test.R’ which spawns itself as a slave and
receives some messages from it.

> source(file.path(Sys.getenv("R_LIBS"),

"rpvm", "demo", "pvm_test.R"))

Spawning 1 children

Spawned 1 Task, waiting for data

Message received from 262165

Hello World! from abacus

Some integers 10 7 13

Some doubles 11.7633 11.30661 10.45883

And a matrix

[,1] [,2] [,3]

[1,] -0.76689970 -1.08892973 -0.1855262

[2,] -0.08824007 0.26769811 -1.1625034

[3,] 1.27764749 0.05790402 -1.0725616

Even a factor!

[1] s t a t i s t i c s

Levels: a c i s t

If this example fails, check to make sure that
‘$R LIBS/rpvm/slaveR.sh’ is in the executable search
path of the pvm daemon and pvm is running.

Features

rpvm provides access to the low-level PVM API as
well as to higher-level functions for passing complex
R data types such as matrices and factors. Future de-
velopment will work at extensions to lists and data
frames as well as eventually to functions and clo-
sures.

Specifically, APIs are provided for the following
tasks:

• Virtual Machine Control: to start the virtual
machine, add and delete hosts, query the con-
figuration of VM and nodes status, shut down
the VM.

R News ISSN 1609-3631

Vol. 1/3, September 2001 6

• Task Control: to enter and exit from pvm, to
start and stop children tasks, query task run-
ning status, etc.

• Message Passing: to prepare and send mes-
sage buffers, to receive message with or with-
out blocking or with timeout, to pack and un-
pack data, etc.

• Miscellaneous functions to set and get pvm
global options, etc.

The implementation currently lacks the functions for
Task Grouping, which is planned for the next release.

rpvm also aims in the long run to provide some
general purpose functionality for some “naturally”
parallel problems (known as “embarrassingly” par-
allel to computer scientists), such as parallel “ap-
ply” (function PVM.rapply in the associated script
‘slapply.R’ being the first attempt) as well as com-
mon tasks such as simple Monte Carlo algorithms for
bootstrapping.

Using RPVM

Strategies for parallel programming

One common approach to parallel program design
(Buyya, 1999) is a master-slave paradigm where one
of the tasks is designated the master task and the
rest are slave tasks. In general, the master task is re-
sponsible for spawning the slave tasks, dividing and
sending workload, collecting and combining results
from the slaves. The slave tasks only participate in
the computation being assigned. Depending on the
algorithm, the slaves may or may not communicate
among themselves. For PVM, the process is summa-
rized as Master tasks:

• Register with PVM daemon.

• Spawn slaves.

• Send Data.

• Collect and combine results.

• Return and quit.

and Slave tasks:

• Register with PVM daemon.

• Locate parent.

• Receive Data.

• Compute.

• Send results

• Quit.

Alternatively, instead of a star-like topology, one
might consider a tree-like process where each task
decides if it should split sub-tasks (and later join) or
compute and return. Each task is the master to its
children and a slave to its parent. This strategy is nat-
ural for “divide and conquer” algorithms and a vari-
ant of the master-slave paradigm. This might look
like:

• Register with PVM daemon

• Determine if I’m the parent or a spawned pro-
cess.

• Receive data if spawned (already have data if
parent).

• Determine if I compute, or if I let slaves com-
pute.

• If slaves compute:

– Spawn slaves.
– Send data to slaves.
– Receive data from slaves.

• Compute.

• If spawned, send results to parent.

• Quit.

This may involve more message passing overhead
but may be more efficient for some problems or net-
work architectures and topologies.

Example

.PVM.rapply implements a preliminary version of
parallel apply function. It divides a matrix up by
rows, sends the function to apply and the sub-
matrices to slave tasks and collects the results at the
end. It is assumed that the slave script knows how
to evaluate the function and returns a scalar for each
row.

PVM.rapply <-

function(X, FUN = mean, NTASK = 1) {

arbitrary integers tag message intent

WORKTAG <- 22

RESULTAG <- 33

end <- nrow(X)

chunk <- end %/% NTASK + 1

start <- 1

Register process with pvm daemon

mytid <- .PVM.mytid()

Spawn R slave tasks

children <- .PVM.spawnR(ntask = NTASK,

slave = "slapply")

One might check if spawning successful,

i.e. entries of children >= 0 ...

If OK then deliver jobs

for(id in 1:length(children)) {

for each child

initialize message buffer for sending

.PVM.initsend()

R News ISSN 1609-3631

Vol. 1/3, September 2001 7

Divide the work evenly (simple-minded)

range <- c(start,

ifelse((start+chunk-1) > end,

end,start+chunk-1))

Take a submatrix

work <-

X[(range[1]):(range[2]),,drop=FALSE]

start <- start + chunk

Pack function name as a string

.PVM.pkstr(deparse(substitute(FUN)))

Id identifies the order of the job

.PVM.pkint(id)

Pack submatrix

.PVM.pkdblmat(work)

Send work

.PVM.send(children[id], WORKTAG)

}

Receive any outstanding result

(vector of doubles) from each child

partial.results <- list()

for(child in children) {

Get message of type result from any

child.

.PVM.recv(-1, RESULTAG)

order <- .PVM.upkint()

unpack result and restore the order

partial.results[[order]] <-

.PVM.upkdblvec()

}

unregister from pvm

.PVM.exit()

return(unlist(partial.results))

}

The corresponding slave script ‘slapply.R’ is

WORKTAG <- 22; RESULTAG <- 33

Get parent task id and register

myparent <- .PVM.parent()

Receive work from parent (a matrix)

buf <- .PVM.recv(myparent, WORKTAG)

Get function to apply

func <- .PVM.upkstr()

Unpack data (order, partial.work)

order <- .PVM.upkint()

partial.work <- .PVM.upkdblmat()

actual computation, using apply

partial.result <- apply(partial.work,1,func)

initialize send buffer

.PVM.initsend()

pack order and partial.result

.PVM.pkint(order)

.PVM.pkdblvec(partial.result)

send it back

.PVM.send(myparent, RESULTAG)

unregister and exit from PVM

.PVM.exit()

An even division of jobs may be far from an opti-
mal strategy, which depends on the problem and in
this case, on the network architecture. For example,
if some nodes in the cluster are significantly faster
than others, one may want send more work to them,
but this might be counterbalanced by network dis-
tance. Computational overhead (more computation

in dividing jobs, network activity due to message
sending, etc.) must be considered to achieve better
work balance.

Discussion

For parallel Monte Carlo, we need reliable paral-
lel random number generators. The requirements
of reproducibility, and hence validation of quality,
is important. It isn’t clear that selecting different
choices of starting seeds for each node will guaran-
tee good randomness properties. The Scalable Par-
allel Random Number Generators (SPRNG, http://
sprng.cs.fsu.edu/) library is one possible candi-
date. We are working toward incorporating SPRNG
into rpvm by providing some wrapper functions as
well as utilizing existing R functions to generate ran-
dom numbers from different distributions.

Another challenging problem is to pass higher
level R objects through PVM. Because internal data
formats may vary across different hosts in the net-
work, simply sending in binary form may not work.
Conversion to characters (serialization) appears to be
the best solution but there is non-trivial overhead for
packing and then sending complicated and/or large
objects. This is a similar to the problem of reading in
data from files and determining proper data types.

Another future issue is to deploy rpvm on Mi-
crosoft Windows workstations. Both PVM and R are
available under Microsoft Windows, and this is one
solution for using additional compute cycles in aca-
demic environments.

Bibliography

R. Buyya, editor. High performance cluster computing:
programming and applications, Volume 2. Prentice
Hall, New Jersey, 1999. 6

A. Geist, A. Beguelin, J. Dongarra, W. Jiang,
R. Manchek, and V. Sunderam. PVM: Parallel Vir-
tual Machine. A user’s guide and tutorial for networked
parallel computing. MIT Press, Massachusetts, 1994.
4

A. Geist, J. A. Kohl, and P. M. Papadopoulos. PVM
and MPI: A comparison of features. Calculateurs
Paralleles, 8, 1996. 4

Michael Na Li
University of Washington
lina@u.washington.edu

Anthony J. Rossini
University of Washington
rossini@u.washington.edu

R News ISSN 1609-3631

http://sprng.cs.fsu.edu/
http://sprng.cs.fsu.edu/
mailto:lina@u.washington.edu
mailto:rossini@u.washington.edu

Vol. 1/3, September 2001 8

strucchange: Testing for Structural Change
in Linear Regression Relationships
by Achim Zeileis

Introduction

The problem of detecting structural changes arises
most often when analyzing time series data with lin-
ear regression models, especially in econometrics.
Consider the standard linear regression model

yi = x>i βi + ui (i = 1, . . . , n),

where at time i, yi is the observation of the depen-
dent variable, xi is a vector of regressors, βi is the k-
dimensional vector of regression coefficients and ui is
an iid error term. Tests on structural change are con-
cerned with testing the null hypothesis of “no struc-
tural change”

H0 : βi = β0 (i = 1, . . . , n),

i.e., that the regression coefficients remain constant,
against the alternative that the coefficient vector
varies over time.

These tests can be divided in two classes, which
are differently suitable for certain patterns of devi-
ation from the null hypothesis. The first class are
the tests from the generalized fluctuation test frame-
work (Kuan and Hornik, 1995) that can detect vari-
ous types of structural changes. The second class are
the tests from the F test framework (Hansen, 1992;
Andrews, 1993), which assume that there is one (un-
known) breakpoint under the alternative.

In this article we describe the ideas and methods
that have been implemented in the package and that
reflect the common features of both classes of tests:
how the model for a test can be fitted, the results plot-
ted and finally how the significance can be assessed.
First we will introduce the tests and then offer an ap-
plication on some anthropological data.

Generalized fluctuation tests

Fluctuation tests are either based on estimates or on
residuals. The idea of the estimates-based tests is,
that if there is a structural change in the data the esti-
mate of the regression coefficients on the basis of all
data should be substantially different from the esti-
mates on subsamples of the data that do not contain
the structural change(s). But these estimates should
be rather similar if the true coefficients remain con-
stant over time. Therefore in this case an empirical
process can be computed by the differences of these
subsample estimates with the overall estimate. The

subsamples are either chosen recursively, i.e., start-
ing with the first k observations and including step
by step the next observation, or by a window of
constant width that “moves” over the whole sam-
ple period. The resulting processes should not fluc-
tuate (deviate from zero) too much under the null
hypothesis and—as the asymptotic distributions of
these processes are well-known—boundaries can be
computed, which are only crossed with a certain con-
trolled probabilityα. If, on the other hand, the empir-
ical process shows large fluctuation and crosses the
boundary, there is evidence that the data contains a
structural change. In this case the recursive estimates
process should have a peak around the change point,
whereas the moving estimates (ME) path will have a
strong shift.

Similarly fluctuation processes can be computed
based on cumulative or moving sums of two types
of residuals: the usual OLS residuals or recursive
residuals, which are (standardized) one-step ahead
prediction errors. The test based on the CUmula-
tive SUM of recursive residuals (the CUSUM test)
was first introduced by Brown et al. (1975) and if
there is just one structural break in the coefficients
the path will start to leave its zero mean around the
break point, because the one-step ahead prediction
errors will be large. The OLS-based CUSUM and
MOSUM (MOving SUM) test have similar proper-
ties as the corresponding estimates-based processes
and under a single shift alternative the OLS-CUSUM
path should have a peak and the OLS-MOSUM path
a shift around the change point. strucchange offers a
unified approach to deal with these processes: given
a formula, which specifies a linear regression model,
efp() computes an empirical fluctuation process of
specified type and returns an object of class "efp".
The plot() method for these objects plots the pro-
cess path (and preserves the time series properties if
the original data was an object of class "ts") by de-
fault together with the corresponding boundaries of
level α = 0.05. The boundaries alone can also be
computed by boundary(). Finally a significance test,
which also returns a p value, can be carried out using
the function sctest() (structural change test). The
proper usage of these functions will be illustrated in
the applications section.

F tests

As mentioned in the introduction, F tests are de-
signed to test against a single shift alternative of the

R News ISSN 1609-3631

Vol. 1/3, September 2001 9

form

βi =
{
βA (1 ≤ i ≤ i0)
βB (i0 < i ≤ n) ,

where i0 is some change point in the interval (k, n−
k). Chow (1960) was the first to suggest a test if the
(potential) change point i0 is known. In his test pro-
cedure two OLS models are fitted: one for the ob-
servations before and one for those after i0 and the
resulting residuals ê = (ûA, ûB)> can then be com-
pared with an F test statistic to the residuals û from
the usual OLS model where the coefficients are just
estimated once:

Fi0 =
(û>û− ê> ê)/k
ê> ê/(n− 2k)

.

For unknown change points (which is the more real-
istic case) F statistics can be calculated for an interval
of potential change points and their supremum can
be used as the test statistic. Such a test rejects the null
hypothesis if one of the computed F statistics gets
larger than a certain critical value or, in other words,
if the path of F statistics crosses a constant bound-
ary (defined by the same critical value). The latter
shows the possibility to treat sequences of F statistics
in a similar way as empirical fluctuation processes:
given a formula, which defines a linear regression
model, the function Fstats() computes a sequence
of F statistics for every potential change point in
a specified data window and returns an object of
class "Fstats" (which again preserves the time se-
ries properties if the original data had any). Like for
efp objects there is a plot() method available, which
plots these F statistics together with their boundary
at level α = 0.05 or the boundary alone can be ex-
tracted by boundary(). If applied to Fstats objects,
sctest() computes by default the supF test statis-
tic and its p value. But there are also two other test
statistics available: namely the average of the given
F statistics or the expF-functional, which have cer-
tain optimality properties (Andrews and Ploberger,
1994).

Application

To demonstrate the functionality of strucchange
(and to show that there are also applications out-
side the field of econometrics) we analyze two
time series of the number of baptisms (which is
almost equivalent to the number of births) and
deaths per month in the rural Austrian village Get-
zersdorf. The data is from the years 1693-1849
(baptisms) and 1710-1841 (deaths) respectively and
was collected by the project group “environmen-
tal history” from the Institute of Anthropology, Vi-
enna University. The trend of the two time se-
ries (extracted by stl()) can be seen in Figure 1.

Time

nu
m

be
r

of
 b

ap
tis

m
s

an
d

de
at

hs

1700 1750 1800 1850

0.
5

1.
0

1.
5

baptisms
deaths

Figure 1: Trend of baptisms and deaths time series
from Getzersdorf

We consider the hypothesis that the number of
baptisms/deaths remains constant over the sample
period. This (almost) implies that the corresponding
rate remains constant, because the number of inhab-
itants remained (almost) constant during the sam-
ple period (but is not known explicitely for every
month).

The graphs suggest that there was some kind of
structural change around 1800 as there is a slight in-
crease in the number of deaths and a dramatic de-
crease in the number of baptisms. At that time Aus-
tria fought against France and Napoleon which ex-
plains the decrease of baptisms because the young
men were away from home (possibly for several
years) and hence couldn’t “produce” any offspring.

Analyzing this data with some of the tests from
strucchange leads to the following results: firstly
a Recursive (or Standard) CUSUM model contain-
ing just a constant term is fitted to the ts objects
baptisms and deaths. The graphical output can be
seen in Figure 2.

R> baptisms.cus <- efp(baptisms ~ 1,

type = "Rec-CUSUM")

R> deaths.cus <- efp(deaths ~ 1,

type = "Rec-CUSUM")

R> plot(baptisms.cus); plot(deaths.cus)

Standard CUSUM test

Time

em
pi

ric
al

 fl
uc

tu
at

io
n

pr
oc

es
s

1700 1750 1800 1850

−
4

−
2

0
2

Standard CUSUM test

Time

em
pi

ric
al

 fl
uc

tu
at

io
n

pr
oc

es
s

1720 1740 1760 1780 1800 1820 1840

−
3

−
2

−
1

0
1

2
3

Figure 2: Recursive CUSUM process for baptisms
(left) and deaths (right) in Getzersdorf

It can be seen clearly that, whereas the empirical fluc-
tuation process for the death series shows no unusual

R News ISSN 1609-3631

Vol. 1/3, September 2001 10

behaviour, the CUSUM path for the baptisms starts
to deviate from its zero mean around 1800, which in-
dicates a structural change at that time. Furthermore
there is some deviation from zero at about 1730 (but
which is not significant at the 5% level) which cor-
responds to the increase in baptisms in the original
series. Supplementing this graphical analysis a for-
mal significance test can be carried out and a p value
can be computed:

R> sctest(baptisms.cus); sctest(deaths.cus)

Standard CUSUM test

data: baptisms.cus

S = 1.7084, p-value = 1.657e-05

Standard CUSUM test

data: deaths.cus

S = 0.6853, p-value = 0.2697

Fitting OLS-MOSUM processes leads to very similar
results as Figure 3 shows.

R> baptisms.mos <- efp(baptisms ~ 1,

type = "OLS-MOSUM")

R> deaths.mos <- efp(deaths ~ 1,

type = "OLS-MOSUM")

R> plot(baptisms.mos); plot(deaths.mos)

OLS−based MOSUM test

Time

em
pi

ric
al

 fl
uc

tu
at

io
n

pr
oc

es
s

1700 1720 1740 1760 1780 1800 1820 1840

−
4

−
3

−
2

−
1

0
1

2

OLS−based MOSUM test

Time

em
pi

ric
al

 fl
uc

tu
at

io
n

pr
oc

es
s

1720 1740 1760 1780 1800 1820

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Figure 3: OLS-based MOSUM process for baptisms
(left) and deaths (right) in Getzersdorf

The fluctuation of the deaths process remains within
its boundaries, although there is a non-significant
shift at about 1800. The MOSUM path for the bap-
tisms on the other hand has two shifts: a smaller one
around 1730 and a stronger one at 1800, which em-
phasizes the Recursive CUSUM results.

Finally F statistics are computed for the given
times series and the results can be seen in Figure 4.

R> baptisms.Fstats <- Fstats(baptisms ~ 1)

R> deaths.Fstats <- Fstats(deaths ~ 1)

R> plot(baptisms.Fstats); plot(deaths.Fstats)

Time

F
 s

ta
tis

tic
s

1720 1740 1760 1780 1800 1820

0
20

40
60

80

Time

F
 s

ta
tis

tic
s

1740 1760 1780 1800 1820

0
2

4
6

8

Figure 4: F statistics for baptisms (left) and deaths
(right) in Getzersdorf

As in the generalized fluctuation tests no significant
result can be achieved for the deaths series, although
there is a small peak around 1810, whereas there is an
overwhelmingly significant peak at around 1800 for
the baptisms. Note that the F statistics just detect the
stronger shift at 1800, because they were designed for
single shift alternatives.

Summary

strucchange offers a unified framework for general-
ized fluctuation and F tests for structural change and
it extends common significance tests by means to vi-
sualize the data and to identify structural changes.
More detailed information about the features of
strucchange can be found in Zeileis et al. (2001).

Bibliography

D. W. K. Andrews. Tests for parameter instabil-
ity and structural change with unknown change
point. Econometrica, 61:821–856, 1993. 8

D. W. K. Andrews and W. Ploberger. Optimal tests
when a nuisance parameter is present only under
the alternative. Econometrica, 62:1383–1414, 1994.
9

R. L. Brown, J. Durbin, and J. M. Evans. Techniques
for testing the constancy of regression relation-
ships over time. Journal of the Royal Statistical So-
ciety, B 37:149–163, 1975. 8

G. C. Chow. Tests of equality between sets of coeffi-
cients in two linear regressions. Econometrica, 28:
591–605, 1960. 9

B. E. Hansen. Tests for parameter instability in re-
gressions with I(1) processes. Journal of Business &
Economic Statistics, 10:321–335, 1992. 8

C.-M. Kuan and K. Hornik. The generalized fluctua-
tion test: A unifying view. Econometric Reviews, 14:
135–161, 1995. 8

R News ISSN 1609-3631

Vol. 1/3, September 2001 11

A. Zeileis, F. Leisch, K. Hornik, and C. Kleiber.
strucchange: An R package for testing for struc-
tural change in linear regression models. Re-
port 55, SFB “Adaptive Information Systems and
Modelling in Economics and Management Sci-
ence”, May 2001. URL http://www.wu-wien.ac.

at/am/reports.htm#55. 10

Achim Zeileis
Technische Universität Wien, Austria
zeileis@ci.tuwien.ac.at

Programmer’s Niche: Macros in R
Overcoming R’s virtues

by Thomas Lumley

A familiar source of questions on the R mailing lists
is the newly converted R user who is trying to write
SAS or Stata code in R. Bill Venables then points out
to them that R is not a macro language, and gently
explains that there is a much easier solution to their
problems. In this article I will explain what a macro
is, why it’s good that R isn’t a macro language, and
how to make it into one.

There are two reasons for this. It has been fa-
mously observed1 that a Real Programmer can write
Fortran code in any language, and it is similarly
an interesting exercise to see how R can implement
macros. Secondly, there are a few tasks for which
macros are genuinely useful, which is why languages
like LISP, for example, provide them.

What is a macro language?

Suppose you have a series of commands

table(treatment, gender)

table(treatment, race)

table(treatment, age.group)

table(treatment, hospital)

table(treatment, diabetic)

These commands can be created by taking the skele-
ton

table(treatment, variable)

substituting different pieces of text for variable, and
evaluating the result. We could also repeatedly call
the table() function with two arguments, the first
being the values of treatment and the second being
the values of the other variable.

R takes the latter approach: evaluate the argu-
ments then use the values. We might define

rxtable <- function(var){

table(treatment, var)

}

Stata typically takes the former approach, substitut-
ing the arguments then evaluating. The ’substitute

then evaluate’ approach is called a macro expansion, as
opposed to a function call. I will write this in pseudo-
R as

rxtable <- macro(var){

table(treatment, var)

}

Why not macros?

In this simple example it doesn’t make much differ-
ence which one you use. In more complicated ex-
amples macro expansion tends to be clumsier. One
of its advantages is that you get the actual argument
names rather than just their values, which is useful
for producing attractive labels, but R’s lazy evalua-
tion mechanism lets you do this with functions.

One problem with macros is that they don’t have
their own environments. Consider the macro

mulplus <- macro(a, b){

a <- a+b

a * b

}

to compute (a + b)(b). This would work as a func-
tion, but as a macro would have undesirable side-
effects: the assignment is not to a local copy of a but
to the original variable. A call like y <- mulplus(x,
2) expands to y <- {x<-x+2; x*2}. This sets y to
the correct value, 2x + 4, but also increments x by 2.
Even worse is mulplus(2, x), which tries to change
the value of 2, giving an error.

We could also try

mulplus <- macro(a, b){

temp <- a+b

temp * b

}

This appears to work, until it is used when we al-
ready have a variable called temp. Good macro lan-
guages need some way to provide variables like temp
that are guaranteed not to already exist, but even this
requires the programmer to declare explicitly which
variables are local and which are global.

The fact that a macro naturally tends to modify
its arguments leads to one of the potential uses of
macro expansion in R. Suppose we have a data frame

1“Real Programmers don’t use Pascal” by Ed Post — try any web search engine

R News ISSN 1609-3631

http://www.wu-wien.ac.at/am/reports.htm#55
http://www.wu-wien.ac.at/am/reports.htm#55
mailto:zeileis@ci.tuwien.ac.at

Vol. 1/3, September 2001 12

in which one variable is coded -9 for missing. We
need to replace this with NA, eg,

library(survival)

data(pbc)

pbc$bili[pbc$bili %in% -9] <- NA

For multiple missing values and many variables
this can be tedious and error-prone. Writing a func-
tion to do this replacement is tricky, as the modifica-
tions will then be done to a copy of the data frame.
We could use the <<- operator to do the assignment
in the calling environment. We then face the prob-
lem that the function needs to know the names pbc
and bili. These problems are all soluble, but indi-
cate that we may be going about things the wrong
way.

We really want to take the expression

df$var[df$var %in% values] <- NA

and substitute new terms for df, var and values,
and then evaluate. This can be done with the
substitute() function

eval(substitute(

df$var[df$var %in% values] <- NA,

list(df=quote(pbc), var=quote(bili),

values=-9)))

but this is even more cumbersome than writing out
each statement by hand. If we could define a macro

setNA<-macro(df, var, values){

df$var[df$var %in% values] <- NA

}

we could simply write

setNA(pbc, bili, -9)

Using macro expansion in R

The example using substitute() shows that macro
expansion is possible in R. To be useful it needs to be
automated and simplified. Adding macro to the lan-
guage as a new keyword would be too much work
for the benefits realised, so we can’t quite implement
the notation for macros that I have used above. We
can keep almost the same syntax by defining a func-
tion defmacro() that has the argument list and the
body of the macro as arguments.

Using this function the setNA macro is defined as

setNA <- defmacro(df, var, values, expr={

df$var[df$var %in% values] <- NA

})

and used with

setNA(pbc, bili, -9).

The argument list in defmacro can include default ar-
guments. If−9 were a commonly used missing value
indicator we could use

setNA <- defmacro(df, var, values = -9, expr={

df$var[df$var %in% values] <- NA

})

Macros can also provide another implementation
of the ‘density of order statistics’ example from the
R-FAQ. The density of the rth order statistic from a
sample of size n with cdf F and density f is

f(r),n(x) =
n(n− 1)!

(n− r)!(r− 1)!
F(x)r−1(1− F(x))n−r f (x).

The FAQ explains how to use lexical scope to imple-
ment this, and how to use substitute() directly. We
can also use a macro

dorder <- defmacro(n, r, pfun, dfun,expr={

function(x) {

con <- n*choose(n-1, r-1)

con*pfun(x)^(r-1)*(1-pfun(x))^(n-r)*dfun(x)

}

})

so that the median of a sample of size 11 from an ex-
ponential distribution has density

dmedian11 <- dorder(11, 6, pexp, dexp)

In this case lexical scope may be an easier solu-
tion, but ‘functions to write functions’ are a standard
use of macros in LISP.

So how does it work?

The function defmacro() looks like

defmacro <- function(..., expr){

expr <- substitute(expr)

a <- substitute(list(...))[-1]

process the argument list

nn <- names(a)

if (is.null(nn)) nn <- rep("", length(a))

for(i in seq(length=length(a))) {

if (nn[i] == "") {

nn[i] <- paste(a[[i]])

msg <- paste(a[[i]], "not supplied")

a[[i]] <- substitute(stop(foo),

list(foo = msg))

}

}

names(a) <- nn

a <- as.list(a)

this is where the work is done

ff <- eval(substitute(

function(){

tmp <- substitute(body)

eval(tmp, parent.frame())

},

list(body = expr)))

add the argument list

formals(ff) <- a

create a fake source attribute

mm <- match.call()

mm$expr <- NULL

mm[[1]] <- as.name("macro")

R News ISSN 1609-3631

Vol. 1/3, September 2001 13

attr(ff, "source") <- c(deparse(mm),

deparse(expr))

return the ’macro’

ff

}

The kernel of defmacro() is the call

ff <- eval(substitute(

function(){

tmp <- substitute(body)

eval(tmp, parent.frame())

},

list(body = expr)))

In the setNA example this creates a function

function(){

tmp <- substitute(

df$var[df$var %in% values] <- NA)

eval(tmp, parent.frame())

}

that performs the macro expansion and then evalu-
ates the expanded expression in the calling environ-
ment. At this point the function has no formal argu-
ment list and most of defmacro() is devoted to cre-
ating the correct formal argument list.

Finally, as printing of functions in R actually uses
the source attribute rather deparsing the function,
we can make this print in a more user-friendly way.
The last lines of defmacro() tell the function that its
source code should be displayed as

macro(df, var, values){

df$var[df$var %in% values] <- NA

}

To see the real source code, strip off the source at-
tribute:

attr(setNA, "source") <- NULL

It is interesting to note that because substitute
works on the parsed expression, not on a text string,
defmacro avoids some of the problems with C pre-
processor macros. In

mul <- defmacro(a, b, expr={a*b})

a C programmer might expect mul(i, j + k) to ex-
pand (incorrectly) to i*j + k. In fact it expands cor-
rectly, to the equivalent of i*(j + k).

Conclusion

While defmacro() has many (ok, one or two) practi-
cal uses, its main purpose is to show off the powers
of substitute(). Manipulating expressions directly
with substitute() can often let you avoid messing
around with pasting and parsing strings, assigning
into strange places with <<- or using other functions
too evil to mention. To make defmacro really useful
would require local macro variables. Adding these is
left as a challenge for the interested reader.

Thomas Lumley
University of Washington, Seattle
tlumley@u.washington.edu

More on Spatial Data Analysis
by Roger Bivand

Introduction

The second issue of R News contained presenta-
tions of two packages within spatial statistics and
an overview of the area; yet another article used a
fisheries example with spatial data. The issue also
showed that there is still plenty to do before spatial
data is as well accommodated as date-time classes
are now. This note will add an introduction to the
splancs package for analysing point patterns, men-
tion briefly work on packages for spatial autocorre-
lation, and touch on some of the issues raised in han-
dling spatial data when interfacing with geographi-
cal information systems (GIS).

●

●
●

●

●

●
●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●
●●
●

●

●●●

●

●

● ●
●● ●

●

●
●

●

●

●

●
●

●

●

●

●
●●

●

●

●
●
●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●●

●

●

●

●

● ●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●
●
●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●
●

●

●●●
●

●

●

●
●

●

●

●●

●

● ●

●
●

●
●

● ●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

200 250 300 350 400

25
0

30
0

35
0

40
0

Data map

Distance
10

20
30

Tim
e

500

1000
1500

D

0e+00
2e+05
4e+05
6e+05
8e+05

D plot

●

●●●

●

●
●●

●

●

●
●
●●

●●
●
●
●●

●

●
●●

●

●
●

●

●●

●
●●
●

●●●

●●

●

●

●

●
●

●

●
●

●

●●

●

●
●

●●●●

●
●

●●

●
●

●

●
●●

●

●
●

●

●●
●●

●
●

●●

●

●●●
●

●●

●

●

●

●

●

●●
●
●
●
●

●
●

●
●

●

●●
●●

●

●
●

●

●

●●
●●

●●

●

●

●

●

●
●●●

●

●
●
●

●

●

●●
●

●●●

●

●

●

●●●
●●

●

●●

●

●

●

●●
●

●
●●

●

●

●

●●●

●●
●

●●

●

●

●

●●●
●

●
●

●

●

●

●●
●
●

●●
●

●

●

●

●

● ● ●
●● ●

●

●

●

●●

●●
●

●
●

●

●
●

●

● ●
●

● ● ●

●

●

●

●
●

●

●●

●●

●

●
●

●

● ● ●
● ● ●

●

●

●●
●

●

●●

●
●

●

●
●

●

● ●
● ● ● ● ●

●

●●●

●

●●

● ●

●

●

●

●

●
●

● ● ● ● ●
●

●

●●

●

●●
● ●

●

●

●

●

● ●

● ● ● ● ●

●
●

0.0e+00 1.0e+07 2.0e+07

0
1

2
3

4
5

K(s)K(t)

R

Residual Plot

Test statistic

F
re

qu
en

cy

−6e+07 −2e+07 2e+07 6e+07

0.
0

0.
5

1.
0

1.
5

2.
0

MC results

Figure 1: Burkitt’s lymphoma — stdiagn() output.

R News ISSN 1609-3631

mailto:tlumley@u.washington.edu

Vol. 1/3, September 2001 14

The splancs package

The splancs package in R is based on a package of
that name written in S and FORTRAN in the early
1990’s by Barry Rowlingson and Peter Diggle to pro-
vide a tool for display and analysis of spatial point
pattern data. The functions provided by the pack-
age are described in detail in Rowlingson and Dig-
gle (1993), and additional space-time and raised in-
cidence functions introduced in version 2 are de-
scribed in file ‘Sp2doc.ps’, available from Barry Rowl-
ingson’s web pages1. Some of the functionality du-
plicates that already in the spatial package (Venables
and Ripley, 1999, Chapter 14) in the VR bundle, a
recommended package, see Ripley (1981) and Diggle
(1983). It is worth noting that the splancs functions
use an arbitrary polygon to define the study region
in the computation of edge effects. The name of the
package perhaps plays on the continuing strength of
Lancaster University in spatial statistics.

The examples and exercises in Bailey and
Gatrell’s 1995 spatial data analysis textbook Bailey
and Gatrell (1995) add a lot to teaching from it.
They are part of software called INFO-MAP pack-
aged with the book and running under DOS. Repli-
cating the functionality needed to study the point
pattern examples under R has been important in
porting splancs to R, especially as the book actually
reproduces output from splancs. Consequently, the
topics covered best by the port are those that carry
most weight in Bailey and Gatrell: kernel estimation,
nearest neighbour distances, the K function, tests for
nearest neighbours and the K function based on com-
plete spatial randomness, and thanks to a contribu-
tion by Giovanni Petris, also on the Poisson cluster
process. These functions cover Chapter 3; with per-
mission from the authors, the package includes data
sets taken from the book.

Topics treated in Chapter 4 include space-time
clustering, correcting for variations in the popula-
tion at risk, and testing for clustering around a spe-
cific point source. The splancs functions for the
first two groups are now fully documented and have
datasets that allow the user to re-create data visu-
alizations as shown in print; these are usually the
source of the graphics for example() for the func-
tion concerned. Running example(stdiagn) gener-
ates the output shown in Figure 1, corresponding to
graphics on page 125 in Bailey and Gatrell — here
to examine space-time clustering in cases of Burkitt’s
lymphoma in the West Nile District of Uganda, 1961–
75.

Because porting splancs has been influenced by
the textbook used for teaching, some parts of the
original material have been omitted — in particu-
lar the uk() function to draw a map of England,
Scotland and Wales (now partly available in pack-
age blighty). An alternative point in polygon al-

gorithm has been added for cases where the result
should not be arbitrary for points on the polygon
boundary (thanks to Barry Rowlingson and Rainer
Hurling). In conclusion, learning about point pat-
tern analysis ought not to start by trying out soft-
ware without access to the underlying references or
textbooks, because of the large number of disparate
methods available, and the relatively small volume
of analyses conducted using them.

Spatial autocorrelation

As pointed out in Brian Ripley’s overview in the
previous issue, the availability of the commercial
S+SpatialStats module for S-PLUS does make the
duplication of implementations less interesting than
trying out newer ideas. A topic of some obscurity is
that of areal or lattice data, for which the available
data are usually aggregations within often arbitrary
tessellations or zones, like counties. They differ from
continuous data where attributes may be observed
at any location, as in geostatistics, often because the
attributes are aggregates, like counts of votes cast in
electoral districts. While this is perhaps not of main-
stream interest, there is active research going on, for
example Bavaud (1998), Tiefelsdorf et al. (1999) and
Tiefelsdorf (2000).

This activity provides some reason to start cod-
ing functions for spatial weights, used to describe
the relationships between the spatial zones, and then
to go on to implement measures of spatial autocor-
relation. So far, a package spweights has been re-
leased to handle the construction of weights ma-
trices of various kinds, together with associated
functions. Comments and suggestions from Elena
Moltchanova, Nicholas Lewin-Koh and Stephane
Dray have helped, allowing lists of neighbours to be
created for distance thresholds and bands between
zone centroids, by triangulation, by graph defined
neighbourhoods, by k-nearest neighbours, by finding
shared polygon boundaries, and reading legacy for-
mat sparse representations. Two classes have been
established, nb for a list of vectors of neighbour in-
dices, and listw for a list with an nb member and a
corresponding list of weights for the chosen weight-
ing scheme. Such a sparse representation permits the
handling of n× n weights matrices when n is large.

An active area of research is the construction of
of tessellations of the plane from points, or other ob-
jects in a minimum amount of time, since without
limiting the search area computations can quickly ex-
ceed O(n2). Research in this area is active in compu-
tational geometry, machine learning, pattern recog-
nition, operations research and geography. Reduc-
tion of computation in these searching operations re-
quires data structures that facilitate fast range search-
ing and query. This is still an area where R is defi-

1http://www.maths.lancs.ac.uk/~rowlings/Splancs/

R News ISSN 1609-3631

http://www.maths.lancs.ac.uk/~rowlings/Splancs/

Vol. 1/3, September 2001 15

cient in relation to packages like S-PLUS and Matlab
which both support quadtrees for accelerated neigh-
bourhood searching.

0.00 0.05 0.10

0
20

40
60

80
10

0

Effects of spatial autocorrelation for different ρ values

estimated variance of the mean

D
en

si
ty

0.0
0.2
0.4
0.6
0.8
0.9

Figure 2: Simulation of the effects of simultaneous
autocorrelation on estimates of the variance of the
mean σ2

x̄

Autocorrelation in a sample is important to
consider, since the presence of autocorrelation can
severely bias the estimation of the variance of
the sample moments. Figure 2 is the output of
example(invIrM), illustrating the effect of increasing
the simultaneous autocorrelation parameter ρ on es-
timates of the variance σ2

x̄ of the mean. The simula-
tion used 500 samples of ε, a random normal variate
with zero mean and unit variance on a 7× 7 lattice on
a torus (a square grid mapped onto a circular tube to
remove edge effects). Autocorrelation is introduced
into x by x = σ(I− ρW)−1ε, where wi j > 0 when i, j
are neighbours, under certain conditions on ρ (Cliff
and Ord, 1981, p. 152). (Sparse representations are
not used because the inverse matrix is dense.) The
vertical line indicates the estimator assuming inde-
pendence of observations, for known σ2 = 1. Since
strong positive autocorrelation erodes the effective
number of degrees of freedom markedly, assuming
independence with spatial data may be brave.

Tests for autocorrelation using these matrices are
implemented in sptests — so far Moran’s I, Geary’s
C and for factors, the same-colour join count test. Us-
ing the USArrests and state data sets, and drop-
ping Alaska and Hawaii, we can examine estimates
of Moran’s I:

I =
n

∑n
i=1 ∑n

j=1 wi j

∑n
i=1 ∑n

j=1 wi j(xi − x̄)(x j − x̄)

∑n
i=1(xi − x̄)2

for weights matrices using row-standardized k-
nearest neighbours schemes for k = 1, . . . , 5, for
wi j = 1/k (Cliff and Ord, 1981, p. 17). Moran’s I
for assault arrests (per 100,000) for 48 US continental

states in 1975 for increasing k is shown in the follow-
ing table: the expectation of I is known (−1/(n− 1))
and the variance is calculated under randomisation.
‘Rank’ is the rank of the observed statistic when
added to the values from 499 permutations.

k Moran’s I Variance Std. deviate Rank
1 0.405 0.0264 2.63 497
2 0.428 0.0161 3.53 500
3 0.306 0.0109 3.14 500
4 0.294 0.0083 3.46 498
5 0.282 0.0066 3.74 500

As can be seen, it does seem likely that observed
rates of assault arrests of k-nearest neighbour states
are positively autocorrelated with each other. Using
these packages, this may be run for k = 4 by:

Centers48 <-

subset(data.frame(x=state.center$x,

y=state.center$y),

!state.name %in% c("Alaska", "Hawaii"))

Arrests48 <-

subset(USArrests, !rownames(USArrests) %in%

c("Alaska", "Hawaii"))

k4.48 <- knn2nb(knearneigh(as.matrix(Centers48),

k=4))

moran.test(x=Arrests48$Assault,

listw=nb2listw(k4.48))

moran.mc(x=Arrests48$Assault,

listw=nb2listw(k4.48), nsim=499)

where knearneigh, knn2nb and nb2listw are in sp-
weights and moran.test and moran.mc in sptests.
The exact distribution of Moran’s I has been solved
as a ratio of quadratic forms Tiefelsdorf and Boots
(1995) but is not yet implemented in the package.
The MC solution is however more general since it
can be applied to any instance of the General Cross
Product statistic Hubert et al. (1981).

(0,100]
(100,150]
(150,200]
(200,250]
(250,300]
(300,350]

Figure 3: Assault arrests (per 100,000) for 48 US con-
tinental states in 1975.

Spatial locations

The state.center data used in the above exam-
ple are documented as being in geographical coor-
dinates, eastings and northings measured in degrees.

R News ISSN 1609-3631

Vol. 1/3, September 2001 16

In finding near neighbours, distances were measured
as if the points representing the states’ location were
on the plane, which they are not. Metadata about the
projection and measurement units of spatial data are
of importance in the same way that adequate han-
dling of date and time objects may matter. There may
be systematic regularities within the data series itself
that are obscured by a lack of registration, and such
a lack may make it impossible to combine the data
at hand with other data with positional accuracy. In
this case, the point locations may be projected onto a
plane, here using the Universal Transverse Mercator
projection, a standard ellipsoid and datum, for zone
15 (centring the plane East-West on Iowa) and mea-
suring in km, using PROJ.4 software2.

write.table(Centers48, file="ll48.txt",

row.names=FALSE, col.names=FALSE)

system(paste("proj -m 1:1000 +proj=utm",

"+zone=15 ll48.txt > utm48.txt"))

Centers48.utm15a <- read.table("utm48.txt")

k3.48utm15 <- knn2nb(knearneigh(as.matrix(

Centers48.utm15), k=3))

summary(diffnb(k3.48utm15, k3.48, verbose=FALSE))

Comparing the neighbour lists for k = 3 near-
est neighbours for the two sets of coordinates shows
that, of the 48 states, 29 had the same 3 nearest neigh-
bours, 18 changed one nearest neighbour, and Idaho
changed 2. Despite this, the results of testing for spa-
tial autocorrelation were unchanged, confirming the
strong impression of spatial structure visualized in
Figure 3.

k Moran’s I Variance Std. deviate Rank
2 0.484 0.0164 3.94 500
3 0.327 0.0108 3.36 499
4 0.315 0.0084 3.67 499

While in this case there is no change in the con-
clusion drawn, it seems to a geographer to be worth
being as careful with spatial metadata as we now
can be with temporal metadata. One approach im-
plemented in the GRASS package for interfacing R
with the GPL’ed geographical information system
GRASS3 is to store the metadata in a separate object
recording the current settings of the GIS: region of in-
terest, projection, measurement units, and raster cell
resolution. This secures the use of the same meta-
data on both sides of the interface for a given work
session, but separate data objects, such as sets of
point coordinates, do not have their own embedded
metadata. An alternative approach is used in the
new package for importing and exporting portable
anymap graphics files (pixmap). Here metadata are
attached to data objects through attribute values, as
ts does with time series objects.

In the same way that it has taken time for dates
and times to find forms that are both powerful and

sufficiently general, spatial data will find a class
structure probably with metadata attributes—even
date/time metadata attributes. It is obvious that du-
plicating GIS functionality in R is not a good solu-
tion, but much spatial data analysis needs a blend
of positional registration, visualization and analyti-
cal tools that are not available within the GIS either.
This means that the GIS-style metadata need to ac-
company the data from the GIS to the analysis en-
vironment and back again. Connections functions
now allow us to move data very freely, but having
to rely on intervention by the analyst to make sure
that metadata follows is not a good solution.

Prospects

There is now a range of packages for spatial statis-
tics in R. They all have different object structures for
positional data, and metadata is handled differently.
R still does not have a map function on CRAN, but
sorting out how to interface with spatial data should
help with this. More efficient mechanisms for ex-
changing data with GIS will add both to access to
modern statistical tools by GIS users, and to more
appropriate treatment of spatial metadata in spatial
statistics. Happily, GPL’ed software like that used for
projection above is under active development, and
standards for spatial data and spatial reference sys-
tems are gelling. These can be given R package wrap-
pers, but there is, though, plenty to do!

Bibliography

T. C. Bailey and A. C. Gatrell. Interactive spatial data
analysis. Longman, Harlow, 1995. 14

F. Bavaud. Models for spatial weights: a systematic
look. Geographical Analysis, 30:152–171, 1998. 14

A. D. Cliff and J. K. Ord. Spatial processes — models
and applications. Pion, London, 1981. 15

P. J. Diggle. Statistical analysis of spatial point patterns.
Academic Press, London, 1983. 14

L. J. Hubert, R. G. Golledge, and C. M. Costanzo.
Generalized procedures for evaluating spatial au-
tocorrelation. Geographical Analysis, 13:224–233,
1981. 15

B. D. Ripley. Spatial statistics. Wiley, New York, 1981.
14

B. Rowlingson and P. J. Diggle. Splancs: spatial point
pattern analysis code in S-PLUS. Computers and
Geosciences, 19:627–655, 1993. 14

2http://www.remotesensing.org/proj/
3http://grass.itc.it/

R News ISSN 1609-3631

http://www.remotesensing.org/proj/
http://grass.itc.it/

Vol. 1/3, September 2001 17

M. Tiefelsdorf. Modelling spatial processes, volume 87
of Lecture notes in earth sciences. Springer, Berlin,
2000. 14

M. Tiefelsdorf and B. Boots. The exact distribution of
Moran’s I. Environment and Planning A, 27:985–999,
1995. 15

M. Tiefelsdorf, D. A. Griffith, and B. Boots. A
variance-stabilizing coding scheme for spatial link
matrices. Environment and Planning A, 31:165–180,
1999. 14

W. N. Venables and B. D. Ripley. Modern applied statis-
tics with S-PLUS. Springer, New York, 1999. 14

Roger Bivand
Economic Geography Section, Department of Economics,
Norwegian School of Economics and Business Adminis-
tration, Bergen, Norway
Roger.Bivand@nhh.no

Object-Oriented Programming in R
by John M. Chambers & Duncan Temple Lang

Although the term object-oriented programming (OOP)
is sometimes loosely applied to the use of methods
in the S language, for the computing community it
usually means something quite different, the style of
programming associated with Java, C++, and sim-
ilar languages. OOP in that sense uses a different
basic computing model from that in R, specifically
supporting mutable objects or references. Special ap-
plications in R can benefit from it, in particular for
inter-system interfaces to OOP-based languages and
event handling. The OOP module in the Omegahat
software implements the OOP model for computing
in R.

S language philosophy and style

When you write software in R, the computations
are a mixture of calls to functions and assignments.
Although programmers aren’t usually consciously
thinking about the underlying philosophy or style,
there is one, and it affects how we use the language.

One important part of the S language philosophy
is that functions ordinarily don’t have side effects on
objects. A function does some computation, perhaps
displays some results, and returns a value. Noth-
ing in the environment from which the function was
called will have been changed behind the scenes.

This contrasts with languages which have the no-
tion of a pointer or reference to an object. Passing a
reference to an object as an argument to a function
or routine in the language allows the called func-
tion to alter the object referred to, in essentially arbi-
trary ways. When the function call is complete, any
changes to that object persist and are visible to the
caller.

In general, S functions don’t deal with references,
but with objects, and function calls return objects,

rather than modifying them. However, the language
does include assignment operations as an explicit
means of creating and modifying objects in the lo-
cal frame. Reading the S language source, one can
immediately see where any changes in an object can
take place: only in the assignment operations for that
specific object.1

Occasionally, users ask for the addition of refer-
ences to R. Providing unrestricted references would
radically break the style of the language. The “raw
pointer” style of programming used in C, for ex-
ample, would be a bad temptation and could cause
chaos for R users, in our opinion.

A more interesting and potentially useful alterna-
tive model, however, comes from the languages that
support OOP in the usual sense of the term. In these
languages, the model for programming is frequently
centered around the definition of a class of objects,
and of methods defined for that class. The model
does support object references, and the methods can
alter an object remotely. In this sense, the model is
still sharply different from ordinary R programming,
and we do not propose it as a replacement.

However, there are a number of applications that
can benefit from using the OOP model. One class
of examples is inter-system interfaces to languages
that use the OOP model, such as Java, Python, and
Perl. Being able to mimic in R the class/method
structure of OOP software allows us to create a better
and more natural interface to that software. R objects
built in the OOP style can be used as regular objects
in those languages, and any changes made to their
state persist. The R code can work directly in terms
of the methods in the foreign language, and much of
the interface software can be created automatically,
using the ability to get back the metadata defining
classes (what’s called reflectance in Java).

Mutable objects (i.e., object references) are also
particularly useful when dealing with asynchronous

1Assuming that the function doesn’t cheat. Almost anything is possible in the S language, in that the evaluator itself is available in
the language. For special needs, such as creating programming tools, cheating this way is admirable; otherwise, it is unwise and strongly
deprecated.

R News ISSN 1609-3631

mailto:Roger.Bivand@nhh.no

Vol. 1/3, September 2001 18

events. For example, when a user clicks on a help
button in a graphical user interface (GUI), we might
first check to see if we have previously created the
help window and if not, create the window and store
a reference to it for use in the future. Here, updating
the state of an object associated with the help action
is convenient and natural. Similarly, cumulating data
from a connection or stream when becomes available
can be done easily by updating the state of an OOP
object.

The OOP model

In the OOP languages of interest here, functions are
no longer the central programming tool. The basic
unit of software is the definition of a class of objects.
The class definition can include the data structure
(the slots or fields) of the class, and the methods that
can be invoked on objects from the class.

Methods in this model play somewhat the role of
functions in R. But, in contrast to methods in R, these
methods are associated with the class and the objects
or particular realizations of the class. You invoke
methods on an object. To illustrate, let’s use an ex-
ample in R. A simple application of OOP-style com-
puting that we will discuss below is to create R ob-
jects that represent FTP (File Transfer Protocol) con-
nections to remote sites.

One of the things you need to do with an FTP
connection is to login. In the OOP model, login is
a method defined for this class of objects. One in-
vokes this method on an object. So, if the S object
franz is an instance from an appropriate FTP class,
the computation might look like:

franz$login("anonymous", "jmc@lucent.com")

In words, this says: for the object franz find the ap-
propriate definition of the login method, and call it
with the two strings as additional arguments. The
exact notation depends on the language. We’re using
the familiar $ operator, which in fact turns out to be
convenient for implementing OOP programming in
R. Java, Python, Perl, and other languages each have
slightly different notation, but the essential meaning
carries over.

Invoking methods rather than calling functions is
the main difference in appearance. Object references
and the ability to change an object through a method
are the main differences in what actually happens.
Where an application naturally suits such references,
the OOP model often fits well. Object references and
OOP suit the example of an FTP connection.

FTP is a simple but effective way to connect to a
remote site on the Web and transfer data back and
forth. Creating a connection to a particular site from
a session in R, say, gives us a “thing”—an object, let’s
say. Unlike more usual R objects such as vectors of
numbers, an FTP connection is very much a single

thing, referring to that actual connection to the re-
mote site. Computations may change the state of that
object (e.g., whether we have successfully logged in
to the site, or where we are currently in the file sys-
tem). When they do, that changed state needs to be
visible to all copies of the object: whatever R function
call we’re in, the FTP object for this connection refers
to the same connection object.

In contrast, if one R function passes a vector of
numbers to another R function, and that function re-
arranges its copy of the numbers, it’s not the usual
model that both copies change! We write R software
all the time in the confidence that we can pass ar-
guments to other functions without worrying about
hidden side effects.

Two different computational models, each useful
in the right context.

OOP in R

The ability to have object references, in effect, in R
can be implemented fairly directly, through a pro-
gramming “trick”. The closure concept in R allows
functions to be created that can read and assign to
variables in their parent environment. These vari-
ables are then in effect references, which can be al-
tered by the functions, acting like OOP methods. Us-
ing closures, we might implement the FTP class in
the following manner:

FTP <- function(host) {

con <- NULL

login <- function(id, passwd) {

if(!is.null(con)) {

stop("already logged in")

}

con <<- .Call("FTPLogin", machine,

id, passwd)

}

return(list(login=login))

}

We can use this

franz <- FTP("franz.stat.wisc.edu")

franz$login("anonymous", "jmc@lucent.com")

The first line creates a new instance of the FTP class
with its own version of the machine and con vari-
ables. The call to login() updates the object’s con
value and subsequent calls can see this new value.
More information and examples of closures are given
in Gentleman and Ihaka (2000).

This approach is simple and fairly efficient, and
can be quite useful. However, we are proposing here
a somewhat more formal mechanism. Being more
formal is helpful, we think, partly because the map-
ping to analogous OOP systems in other languages
is then clearer. Formal definitions in software also
have the advantage that they can be queried to let

R News ISSN 1609-3631

Vol. 1/3, September 2001 19

software help write other software. We use such
“reflectance” in other languages when building in-
terfaces from R, and being formal ourselves brings
similar advantages. Interfaces from other languages
can query OOP class definitions in R. For example,
we can automatically define Java or Python classes
that mimic or even extend R classes. Programming
with formal OOP classes in R should be easier also,
since the formal approach provides tools for defin-
ing classes and methods similar to those that have
worked well in other languages, while at the same
time being simple to use in R. Finally, the formal
OOP approach makes it more feasible to have an
OOP formalism that is compatible between R and S-
Plus, making software using the approach available
to a wider audience.

Defining classes

OOP programming begins by defining a class; specif-
ically by creating a class object with a call to the
setOOPClass function:

> setOOPClass("FTP")

The call to setOOPClass creates an OOP class defini-
tion object, with "FTP" as the class name, and also
assigns the object with the same name. Class ob-
jects contain definitions for the methods available in
the class. Objects from the class will usually contain
data, stored in specified fields in the class. In our
model, these fields are not accessed directly; access
is encapsulated into methods to get and set fields.
Classes can inherit from other OOP classes, and the
class can itself have methods and fields. The class ob-
ject, FTP, is an OOP object itself, so we can use OOP
methods to set information in the class object.

For our FTP example, the class contains two fields
to hold the name of the machine and the connection
object:

> FTP$setFields(machine = "character",

con = "connection")

This has the side effect of creating methods for set-
ting and getting the values of these fields. To use the
class, we create a constructor function which is re-
sponsible for storing the name of the host machine.

FTP$defineClassMethod(

"new", function(machine) {

x <- super(new())

x$setMachine(machine)

x

}

)

Next we define the login() method for objects of
this class.

FTP$defineMethod(

"login", function(id, passwd) {

setConnection(

.Call("FTPLogin",

getMachine(), id, passwd))

}

)

The OOP methods defineMethod and defineClass-
Method modify the object FTP.

Besides defining classes directly, R programmers
can create interfaces to class definitions in other lan-
guages. If our FTP class used the interface to Perl, it
might be created directly from a known class in Perl:

> FTP <- PerlClass("FTP", package="Net")

Methods for such classes can be defined automati-
cally, using reflectance information. The extent to
which this happens varies with the other language—
Java provides a lot of information, Perl less.

Once the class is defined, objects can be created
from it.

> franz <- FTP$new("franz.stat.wisc.edu")

Objects from an OOP class can be assigned and
passed to functions just like any objects in R. But they
are fundamentally different, in that they contain an
object reference. If franz is passed to an R function,
and that function calls an OOP method that changes
something in its argument, you can expect to see the
effect of the change in the object franz as well.

Further information

The software and documentation for the OOP pack-
age for R is available from the Omegahat Web site at
http://www.omegahat.org/OOP/.

Bibliography

Robert Gentleman and Ross Ihaka. Lexical scope and
statistical computing. Journal of Computational and
Graphical Statistics, 9(3):491–508, September 2000.
18

John Chambers
Bell Labs, Murray Hill, New Jersey, U.S.A
jmc@research.bell-labs.com

Duncan Temple Lang
Bell Labs, Murray Hill, New Jersey, U.S.A
duncan@research.bell-labs.com

R News ISSN 1609-3631

http://www.omegahat.org/OOP/
mailto:jmc@research.bell-labs.com
mailto:duncan@research.bell-labs.com

Vol. 1/3, September 2001 20

In Search of C/C++ & FORTRAN Routines
by Duncan Temple Lang

One of the powerful features of the S language (i.e.,
R and S-Plus) is that it allows users to dynamically
(i.e., in the middle of a session) load and call arbitrary
C/C++ and FORTRAN routines. The .C(), .Call()1,
.Fortran() and .External() functions allow us to
call routines in third-party libraries such as NAG, At-
las, Gtk, while the data is created and managed in S.
Importantly, it also allows us to develop algorithms
entirely in S and then, if needed, gradually move the
computationally intensive parts to more efficient C
code. More recently, we have generalized these in-
terfaces to “foreign” languages to provide access to,
for example, Java, Python, Perl and JavaScript.

In this article we discuss some of the pitfalls of the
current mechanism that R uses to locate these native
routines. Then we present a new mechanism which
is more portable, and offers several beneficial side ef-
fects which can make using native routines more ro-
bust and less error-prone.

The current system

The dyn.load() function in R loads a C or FOR-
TRAN shared library or dynamically linked library
(DLL) into the session and makes all the routines in
that library available to the R user. This allows S
users to call any symbol in that library, including
variables! The low-level details of dyn.load() are
usually provided by the user’s operating system, and
in other cases can be implemented with some clever,
non-portable code. While we get much of this for
free, there are many subtle but important differences
across the different operating systems on which R
runs, Windows, Linux, Solaris, Irix, Tru64, Darwin,
to name a few. And worse still, the behavior depends
on both the machines and the user’s own configura-
tions. Therefore, porting working code to other plat-
forms may be non-trivial.

Many uses of dyn.load() are quite straightfor-
ward, involving C code that doesn’t make use of
any other libraries (e.g., the mva and eda packages).
Things become more complex when that C code uses
other libraries (e.g., the NAG and Lapack libraries),
and significantly more variable when those third
party libraries in turn depend on other libraries. The
main issue for users is how are these other libraries
found on the system. Developers have to be careful
that symbols in one library do not conflict with those
in other libraries and that the wrong symbols do not
get called, directly or indirectly. There exists a non-
trivial chance of performing computations with the
wrong code and getting subtly incorrect results. If

one is lucky, such errors lead to catastrophic conse-
quences and not hard to identify errors in the results.

And, of course, regardless of finding the correct
routine, users also have to be careful to pass the cor-
rect number and type of arguments to the routines
they are intending to call. Getting this wrong typi-
cally terminates the S session in an inelegant manner.
(Read “crash”!)

Generally, while DLLs have many benefits, they
can also be quite complicated for the user to man-
age precisely. Why I am telling you about the poten-
tial pitfalls of the dynamic loading facility, especially
when for most users things have worked quite well
in the past? One reason is that as we use R in more
complex settings (e.g., embedded in browsers, com-
municating with databases) these problems will be-
come more common. Also, the main point, however,
is that we only use a small part of the dynamic load-
ing capabilities of the operating system but have to
deal with all of the issues. A simpler mechanism is
more appropriate for most S users. R 1.3.0 allows de-
velopers of R packages and DLLs to use a more co-
herent and predictable mechanism for making rou-
tines available to the .C(), .Call(), .Fortran() and
.External() functions.

In the next page or two, we’ll take a brief look
at an example of using this new mechanism and ex-
plain how it works. We’ll also discuss how we will
be able to use it to make accessing native code more
resistant to errors and also automate aspects of pass-
ing data to C routines from S and back. The new Slcc
package has potential to programmatically generate
S and C code that provides access to arbitrary C li-
braries.

The default mechanism

When one calls a native routine using one of the
.C(), .Call() or .Fortran() interface functions, one
supplies the name of the native routine to invoke, the
arguments to be passed to that routine and a non-
obligatory PACKAGE argument identifying the DLL in
which to search for the routine. The standard mech-
anism uses the operating system facilities to look in
the DLL corresponding to the PACKAGE argument (or
through all DLLs if the caller did not specify a value
for the PACKAGE argument.) This lookup means that
we can ask for any available routine in the library,
whether it was intended to be called by the S pro-
grammer or internally by other routines in the DLL.
Also, we know nothing about that routine: the num-
ber or type of arguments it expects, what it returns.

It is common to mistakenly invoke a routine de-
signed for use with .Call(), but using the .C() func-

1The .Call() function allows one to pass regular S objects directly between S and C.

R News ISSN 1609-3631

Vol. 1/3, September 2001 21

tion. On some machines, this this can crash R and
one can lose the data in the R session. For example,
on Solaris this will usually cause a crash but not on
Linux. Or is it on Solaris only if one uses gcc? or
Sun’s own compilers? That’s really the point: we are
depending on highly system-specific features that
are not entirely reproducible and can be very, very
frustrating to diagnose. Ideally, we want S to help
out and tell us we are calling native routines with the
wrong function, signal that we have the wrong num-
ber of arguments, and perhaps even convert those ar-
guments to the appropriate types.

Registering routines

Well, there is a better approach which allows S to do
exactly these things. The idea is to have the DLL ex-
plicitly tell S which routines are available to S, and
for which interface mechanisms (.C(), .Call(), . . .).
R stores the information about these routines and
consults it when the user calls a native routine. When
does the DLL get to tell R about the routines? When
we load the DLL, R calls the R-specific initialization
routine in that DLL (named R_init_dllname()), if it
exists. This routine can register the routines as well
as performing any other initialization it wants.

An example will hopefully make things clear. We
will create a shared library named ‘myRoutines.so’2.
This provides two routines (fooC() and barC()) to be
called via the .C() function and one (myCall()) to be
accessed via .Call(). We’ll ignore the code in the
routines here since our purpose is only to illustrate
how to register the routines.

static void fooC(void)

{ ... }

static void barC(double *x, Rint *len)

{ ... }

static SEXP myCall(SEXP obj)

{ return(obj); }

Now that we have defined these routines, we can
add the code to register them (see figure 2). We cre-
ate two arrays, one for each of the .C() and .Call()
routines. The types of the arrays are R_CMethodDef
and R_CallMethodDef, respectively. Each routine to
be registered has an entry in the appropriate array.
These entries (currently) have the same form for each
type of routine and have 3 required elements:

S name The name by which S users refer to the rou-
tine. This does not have to be the same as the
name of the C routine.

C routine This is the address of the routine, given
simply by its name in the code. It should be
cast to type DL_FUNC.

argument count The number of arguments the rou-
tine expects. This is used by R to check that
the number of arguments passed in the call
matches what is expected. In some circum-
stances one needs to avoid this check. Speci-
fying a value of -1 in this field allows this.

The last entry in each top-level array must be NULL. R
uses this to count the number of routines being reg-
istered.

For our example, these arrays are defined in fig-
ure 1. The code includes the file ‘R ext/Rdynload.h’
so as to get the definitions of the array types. Then
we list the two entries for the .C() routines and the
single entry in the R_CallMethodDef array.

#include <R_ext/Rdynload.h>

static const

R_CMethodDef cMethods[] = {

{"foo", (DL_FUNC) &fooC, 0},

{"barC", (DL_FUNC) &barC, 2},

NULL

};

static const

R_CallMethodDef callMethods[] = {

{"myCall", (DL_FUNC) &myCall, 1},

NULL

};

Figure 1: Defining the registration information

The very final step is to define the initialization
routine that is called when the DLL is loaded by
R. Since the DLL is called ‘myRoutines.so’, the name
of the initialization routine is R_init_myRoutines().
When the DLL is loaded, R calls this with a single
argument (info) which is used to store information
about the DLL being loaded. So we define the rou-
tine as follows:

void R_init_myRoutines(DllInfo *info)

{

/* Register the .C and .Call routines.

No .Fortran() or .External() routines,

so pass those arrays as NULL.

*/

R_registerRoutines(info,

cMethods, callMethods,

NULL, NULL);

}

Figure 2: Registering the .C() and .Call() routines

From this point on, the library developer can pro-
ceed in the usual manner, and does not need to do

2The extension is platform-specific, and will ‘.dll’ on Windows.

R News ISSN 1609-3631

Vol. 1/3, September 2001 22

anything else for the registration mechanism. She
compiles the library using the usual command and
loads it using dyn.load() or library.dynam(). In
my example, I have a single file named ‘myRoutines.c’
and, in Unix, create the DLL with the command

R CMD SHLIB myRoutines.c

The internal R code will determine whether the reg-
istration mechanism is being used and take the ap-
propriate action.

Now we can test our example and see what the
registration mechanism gives us. First, we start R
and load the DLL. Then we call the routine foo().
Next, we intentionally call this with errors and see
how R catches these.

> dyn.load("myRoutines.so")

> .C("foo")

In fooC

list()

> .C("foo", 1)

Error: Incorrect number of arguments (1),

expecting 0 for foo

> .Call("foo") # Should be .C("foo")

Error in .Call("foo") :

.Call function name not in load table

Next, we move to the .Call() routine myCall().

> .Call("myCall") # no argument

Error: Incorrect number of arguments (0),

expecting 1 for myCall

> .Call("myCall", 1)

In myCall

[1] 1

> .C("myCall", 1) # Should be .Call("myCall")

Error in .C("myCall", 1) :

C/Fortran function name not in load table

The very observant reader may have noticed that
the three routines have been declared to be static.
Ordinarily this would mean that they are not visible
to R. Since we explicitly register the routines with R
by their addresses (and not during compilation), this
works as intended. The routines are only accessed
directly from within the file. And now we have re-
duced the potential for conflicts between symbols in
different libraries and of finding the wrong symbol.

Our example dealt with routines to be called via
the .C() and .Call() functions. FORTRAN rou-
tines and those called via the .External() function
are handled in exactly the same way, defining ar-
rays for those routines. In our example, we speci-
fied NULL for the 3rd and 4th arguments in the call to
R_registerRoutines() to indicate that we had no rou-
tines in either of these categories.

Rarely are libraries completely cast in stone. We
occasionally add routines and want to be able to
call them from R. To do this, one should regis-
ter them and this merely involves adding them
to the appropriate array which is passed in the

R_registerRoutines() call. When one is developing
the library, it can be inconvenient to have to remem-
ber to register routines each time we add them. In-
stead, it would be useful to be able to use the regis-
tration mechanism and, if the routine was not found
there, to default to the dynamic lookup mechanism.
This is easy to do from within the initialization rou-
tine for the DLL. In that routine, add the call

R_usedDynamicSymbols(info, TRUE);

where info is the DllInfo object passed as argument
to the initialization routine.

One can find additional examples of how to use
the registration mechanism in the packages shipped
with R itself (ctest, mva, . . .). Also more technical
overview of the mechanism with some annotated ex-
amples and more motivation is available at http://
developer.r-project.org/DynamicCSymbols.pdf.

Extended applications

The motivation for developing the registration mech-
anism was to avoid the problems discussed at the be-
ginning of this article. However, now that we have
this mechanism in place, it turns out that we can
make more use of it.

We have seen how we can ensure that routines are
called via the correct interface. In other words, we
check that .C() routines are not called via .Call(),
and similarly for the other interfaces. Verifying the
number of arguments is convenient, especially when
the author of the DLL is actively developing the code
and changing the number of arguments.

We can take this one step further by specifying
the types of the expected arguments in .C() and
.Fortran() routines.3 For instance, in our exam-
ple, we could give the types of the two parameters
of barC(). We haven’t yet finalized the details of this
interface and so it is not part of R quite yet. However,
it might look something like the following:

static const R_CMethodDef cMethods[] = {

{"foo", (DL_FUNC) &fooC, 0},

{"barC", (DL_FUNC) &barC, 2,

{ REALSXP, INTSXP } },

NULL

};

When the internal mechanism associated with the
.C() function handles a call to barC() it can then
check that the S objects passed in the .C() call cor-
respond to these types. R can raise an error if it
discovers an argument of the wrong type, or alter-
natively can convert it to the type the routine is ex-
pecting. This is a powerful facility that not only re-
duces errors, but also proves to be very useful for
handling large, external datasets. Indeed, R 1.3.0 has

3This isn’t as useful for .Call() and .External() since these take S objects which all have the same type.

R News ISSN 1609-3631

http://developer.r-project.org/DynamicCSymbols.pdf
http://developer.r-project.org/DynamicCSymbols.pdf

Vol. 1/3, September 2001 23

a feature that allows users to specify conversion rou-
tines for certain types of objects that are handled via
the .Call() (see http://cm.bell-labs.com/stat/
duncan/SCConverters).

A potentially important use of the registration
mechanism relates to security, and specifically pro-
hibiting some users calling certain native routines
that have access to sensitive data. We have been de-
veloping packages that embed R within spreadsheets
such as Gnumeric and Excel; Web browsers such as
Netscape; relational databases such as Postgres; and
so on. One benefit of this approach is that one can
run R code that is dynamically downloaded from the
Web. However, as we all know, this is a common way
to download viruses and generally make ones ma-
chine vulnerable. Using the registration mechanism,
developers can mark their routines as being vulner-
able and to be used only in “secure” sessions. What
this means exactly remains to be defined!

Building the table automatically

This registration mechanism offers all the advan-
tages that we have mentioned above. However, it
requires a little more work by the developer. Since
the original lookup mechanism still works, many de-
velopers may not take the time to create the arrays
of routine definitions and register them. It would
be convenient to be able to generate the registration
code easily and without a lot of manual effort by the
developer.

The Slcc (http://www.omegahat.org/Slcc/)
package from the Omegahat project provides a gen-

eral mechanism for processing C source code and re-
turning information about the data structures, vari-
ables and routines it contains. This information is
given as S objects and can be used to generate C
code. The package provides a function to read both
the S and C code of a library and generate the C code
to register (only) the routines that are referenced in
the S code.

The Slcc package is in the early stages of devel-
opment. It runs on Linux, but there are some minor
installation details to be worked out for other plat-
forms.

Summary

The new registration mechanism is being used in the
R packages within the core R distribution itself and
seems to be working well. We hope some of the
benefits are obvious. We expect that others will ap-
pear over time when we no longer have to deal with
subtle differences in the behavior of various operat-
ing systems and how to handle dynamically loaded
code. The only extra work that developers have to
do is to explicitly create the table of routines that are
to be registered with R. The availability of the Slcc
package will hopefully help to automate the creation
of the registration code and make it a trivial step. We
are very interested in peoples’ opinions and sugges-
tions.

Duncan Temple Lang
Bell Labs, Murray Hill, New Jersey, U.S.A
duncan@research.bell-labs.com

Support Vector Machines
The Interface to libsvm in package e1071

by David Meyer

“Hype or Hallelujah?” is the provocative title used
by Bennett & Campbell (2000) in an overview of Sup-
port Vector Machines (SVM). SVMs are currently a
hot topic in the machine learning community, creat-
ing a similar enthusiasm at the moment as Artificial
Neural Networks used to do before. Far from being
a panacea, SVMs yet represent a powerful technique
for general (nonlinear) classification, regression and
outlier detection with an intuitive model representa-
tion.

Package e1071 offers an interface to the award-
winning1 C++ SVM implementation by Chih-Chung
Chang and Chih-Jen Lin, libsvm (current version:

2.31), featuring:

• C- and ν-classification

• one-class-classification (novelty detection)

• ε- and ν-regression

and includes:

• linear, polynomial, radial basis function, and
sigmoidal kernels

• formula interface

• k-fold cross validation

For further implementation details on libsvm, see
Chang & Lin (2001).

1The library won the IJCNN 2001 Challenge by solving two of three problems: the Generalization Ability Challenge (GAC) and the
Text Decoding Challenge (TDC). For more information, see: http://www.csie.ntu.edu.tw/~cjlin/papers/ijcnn.ps.gz.

R News ISSN 1609-3631

http://cm.bell-labs.com/stat/duncan/SCConverters
http://cm.bell-labs.com/stat/duncan/SCConverters
http://www.omegahat.org/Slcc/
mailto:duncan@research.bell-labs.com
http://www.csie.ntu.edu.tw/~cjlin/papers/ijcnn.ps.gz

Vol. 1/3, September 2001 24

Basic concept

SVMs were developed by Cortes & Vapnik (1995) for
binary classification. Their approach may be roughly
sketched as follows:

Class separation: basically, we are looking for the
optimal separating hyperplane between the
two classes by maximizing the margin between
the classes’ closest points (see Figure 1)—the
points lying on the boundaries are called sup-
port vectors, and the middle of the margin is our
optimal separating hyperplane;

Overlapping classes: data points on the “wrong”
side of the discriminant margin are weighted
down to reduce their influence (“soft margin”);

Nonlinearity: when we cannot find a linear sepa-
rator, data points are projected into an (usu-
ally) higher-dimensional space where the data
points effectively become linearly separable
(this projection is realised via kernel techniques);

Problem solution: the whole task can be formulated
as a quadratic optimization problem which can
be solved by known techniques.

A program able to perform all these tasks is called a
Support Vector Machine.

{Margin

Support Vectors

Separating
Hyperplane

Figure 1: Classification (linear separable case)

Several extensions have been developed; the ones
currently included in libsvm are:

ν-classification: this model allows for more con-
trol over the number of support vectors (see
Schölkopf et al., 2000) by specifying an ad-
ditional parameter ν which approximates the
fraction of support vectors;

One-class-classification: this model tries to find the
support of a distribution and thus allows for
outlier/novelty detection;

Multi-class classification: basically, SVMs can only
solve binary classification problems. To allow
for multi-class classification, libsvm uses the
one-against-one technique by fitting all binary
subclassifiers and finding the correct class by
a voting mechanism;

ε-regression: here, the data points lie in between the
two borders of the margin which is maximized
under suitable conditions to avoid outlier in-
clusion;

ν-regression: with analogous modifications of the
regression model as in the classification case.

Usage in R

The R interface to libsvm in package e1071, svm(),
was designed to be as intuitive as possible. Models
are fitted and new data are predicted as usual, and
both the vector/matrix and the formula interface are
implemented. As expected for R’s statistical func-
tions, the engine tries to be smart about the mode to
be chosen, using the dependent variable’s type (y):
if y is a factor, the engine switches to classification
mode, otherwise, it behaves as a regression machine;
if y is omitted, the engine assumes a novelty detec-
tion task.

Examples

In the following two examples, we demonstrate the
practical use of svm() along with a comparison to
classification and regression trees as implemented in
rpart().

Classification

In this example, we use the glass data from the UCI
Repository of Machine Learning Databases (avail-
able in package mlbench) for classification. The task
is to predict the type of a glass on basis of its chemi-
cal analysis. We start by splitting the data into a train
and test set:

library(e1071)

library(rpart)

library(mlbench)

data(Glass)

split data into a training and test set

index <- 1:nrow(x)

testindex <- sample(index,

trunc(length(index)/3))

testset <- x[testindex,]

trainset <- x[-testindex,]

R News ISSN 1609-3631

http://www.ics.uci.edu/mlearn/MLRepository.html
http://www.ics.uci.edu/mlearn/MLRepository.html

Vol. 1/3, September 2001 25

Both for the SVM and the partitioning tree (via
rpart()), we fit the model and try to predict the test
set values:

svm

svm.model <- svm(Type ~ ., data = trainset,

cost = 100, gamma = 1)

svm.pred <- predict(svm.model, testset[,-10])

(The dependent variable, Type, has column number
10. cost is a general parameter for C-classification
and gamma is the radial basis function-specific kernel
parameter.)

rpart

rpart.model <- rpart(Type ~ ., data = trainset)

rpart.pred <- predict(rpart.model,

testset[,-10], type = "class")

A cross-tabulation of the true versus the predicted
values yields:

compute svm confusion matrix

table(pred = svm.pred, true = testset[,10])

true

pred 1 2 3 5 6 7

1 8 7 2 0 0 0

2 5 19 0 0 1 0

3 3 3 2 0 0 0

5 0 4 0 2 2 0

6 0 0 0 0 3 0

7 2 0 0 0 0 8

compute rpart confusion matrix

table(pred = rpart.pred, true = testset[,10])

true

pred 1 2 3 5 6 7

1 8 10 2 2 2 0

2 9 17 1 0 2 0

3 0 4 1 0 0 0

5 0 1 0 0 2 0

6 0 0 0 0 0 0

7 1 1 0 0 0 8

Finally, we compare the performance of the two
methods by computing the respective accuracy
rates and the kappa indices (as computed by
classAgreement() also contained in package e1071).
In Table 1, we summarize the results of 100 replica-
tions: svm() seems to perform slightly better than
rpart().

Non-linear ε-regression

The regression capabilities of SVMs are demon-
strated on the ozone data, also contained in ml-
bench. Again, we split the data into a train and test
set.

library(e1071)

library(rpart)

library(mlbench)

data(Ozone)

split data into a training and test set

index <- 1:nrow(x)

testindex <- sample(index,

trunc(length(index)/3))

testset <- x[testindex,]

trainset <- x[-testindex,]

svm

svm.model <- svm(V4 ~ ., data = trainset,

cost = 1000, gamma = 0.0001)

svm.pred <- predict(svm.model, testset[,-4])

rpart

rpart.model <- rpart(V4 ~ ., data = trainset)

rpart.pred <- predict(rpart.model, testset[,-4])

We compare the two methods by the mean squared
error (MSE)—see Table 2. Here, in contrast to classi-
fication, rpart() does a better job than svm().

Elements of the svm object

The function svm() returns an object of class “svm”,
which partly includes the following components:

SV: matrix of support vectors found;

labels: their labels in classification mode;

index: index of the support vectors in the input data
(could be used e.g., for their visualization as
part of the data set).

If the cross-classification feature is enabled, the svm
object will contain some additional information de-
scribed below.

Other main features

Class Weighting: if one wishes to weight the classes
differently (e.g., in case of asymmetric class
sizes to avoid possibly overproportional influ-
ence of bigger classes on the margin), weights
may be specified in a vector with named com-
ponents. In case of two classes A and B,
we could use something like: m <- svm(x, y,
class.weights = c(A = 0.3, B = 0.7))

Cross-classification: to assess the quality of the
training result, we can perform a k-fold cross-
classification on the training data by setting the
parameter cross to k (default: 0). The svm ob-
ject will then contain some additional values,
depending on whether classification or regres-
sion is performed. Values for classification:

accuracies: vector of accuracy values for each
of the k predictions

R News ISSN 1609-3631

Vol. 1/3, September 2001 26

Index Method Min. 1st Qu. Median Mean 3rd Qu. Max.
accuracy rate svm 0.55 0.63 0.68 0.68 0.70 0.79

rpart 0.49 0.63 0.65 0.66 0.70 0.79
kappa svm 0.40 0.51 0.56 0.56 0.61 0.72

rpart 0.33 0.49 0.52 0.53 0.59 0.70

Table 1: Performance of svm() and rpart() for classification (100 replications)

Method Min. 1st Qu. Median Mean 3rd Qu. Max.
svm 7.8 10.4 11.6 11.9 13.1 17.0
rpart 4.8 7.7 8.8 9.0 10.3 14.2

Table 2: Performance of svm() and rpart() for regression (mean squared error, 100 replications)

tot.accuracy: total accuracy

Values for regression:

MSE: vector of mean squared errors for each of
the k predictions

tot.MSE: total mean squared error

scorrcoef: Squared correlation coefficient (of
the predicted and the true values of the
dependent variable)

Tips on practical use

• Note that SVMs may be very sensible to the
proper choice of parameters, so always check
a range of parameter combinations, at least on
a reasonable subset of your data.

• For classification tasks, you will most likely use
C-classification with the RBF kernel (default),
because of its good general performance and
the few number of parameters (only two: C and
γ). The authors of libsvm suggest to try small
and large values for C—like 1 to 1000—first,
then to decide which are better for the data by
cross validation, and finally to try several γ’s
for the better C’s.

• Be careful with large datasets as training times
may increase rather fast.

Conclusion

We hope that svm provides an easy-to-use interface to
the world of SVMs, which nowadays have become a
popular technique in flexible modelling. There are
some drawbacks, though: SVMs scale rather badly

with the data size due to the quadratic optimiza-
tion algorithm and the kernel transformation. Fur-
thermore, the correct choice of kernel parameters is
crucial for obtaining good results, which practically
means that an extensive search must be conducted
on the parameter space before results can be trusted,
and this often complicates the task (the authors of
libsvm currently conduct some work on methods of
efficient automatic parameter selection). Finally, the
current implementation is optimized for the radial
basis function kernel only, which clearly might be
suboptimal for your data.

Bibliography

Bennett, K. P. & Campbell, C. (2000). Support vec-
tor machines: Hype or hallelujah? SIGKDD Explo-
rations, 2(2). http://www.acm.org/sigs/sigkdd/
explorations/issue2-2/bennett.pdf. 23

Chang, C.-C. & Lin, C.-J. (2001). Libsvm: a
library for support vector machines (version
2.31). http://www.csie.ntu.edu.tw/~cjlin/
papers/libsvm.pdf. 23

Cortes, C. & Vapnik, V. (1995). Support-vector net-
work. Machine Learning, 20, 1–25. 24

Schölkopf, B., Smola, A., Williamson, R. C., &
Bartlett, P. (2000). New support vector algorithms.
Neural Computation, 12, 1207–1245. 24

Vapnik, V. (1998). Statistical learning theory. New
York: Wiley.

David Meyer
Technische Universität Wien, Austria
David.Meyer@ci.tuwien.ac.at

R News ISSN 1609-3631

http://www.acm.org/sigs/sigkdd/explorations/issue2-2/bennett.pdf
http://www.acm.org/sigs/sigkdd/explorations/issue2-2/bennett.pdf
http://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.pdf
http://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.pdf
mailto:David.Meyer@ci.tuwien.ac.at

Vol. 1/3, September 2001 27

A Primer on the R-Tcl/Tk Package
by Peter Dalgaard

Introduction

Tcl/Tk is a combination of a scripting language and
a toolkit for graphical user interfaces. Since version
1.1.0, R has had a tcltk package to access the Tk
toolkit, replacing Tcl code with R function calls (Dal-
gaard, 2001). There are still some design problems in
it, but it is quite useful already in its current state.

This paper intends to get you started with the R-
Tcl/Tk interface. Tcl/Tk is a large package, so it is
only possible to explain the basic concepts here.

The presentation here is based on the X11/Unix
version of R. The tcltk package also works on Win-
dows. It (currently) does not work with Mac OS
Classic but it does work with OS X. It is only the
Linux variants that come with Tcl/Tk; on other sys-
tems some footwork will be necessary to get it in-
stalled.

Widgets

A widget is a GUI element. Tk comes with a selection
of basic widgets: text editing windows, sliders, text
entry fields, buttons, labels, menus, listboxes, and a
canvas for drawing graphics. These can be combined
to form more complex GUI applications.

Let us look at a trivial example:

library(tcltk)

tt <- tktoplevel()

lbl <- tklabel(tt, text="Hello, World!")

tkpack(lbl)

This will cause a window to be displayed contain-
ing the “Hello, World!” message. Notice the overall
structure of creating a container widget and a child
widget which is positioned in the container using a
geometry manager (tkpack). Several widgets can be
packed into the same container, which is the key to
constructing complex applications out of elementary
building blocks. For instance, we can add an “OK”
button with

but <- tkbutton(tt, text="OK")

tkpack(but)

The window now looks as in Figure 1. You can
press the button, but no action has been specified for
it.

Figure 1: Window with label widget and button wid-
get.

The title of the window is “1” by default. To set a
different title, use

tktitle(tt) <- "My window"

Geometry managers

A geometry manager controls the placement of slave
widgets within a master widget. Three different ge-
ometry managers are available in Tcl/Tk. The sim-
plest one is called the placer and is almost never used.
The others are the packer and the grid manager.

The packer “packs widgets in order around edges
of cavity”. Notice that there is a packing order and a
packing direction.

In the example, you saw that the window auto-
sized to hold the button widget when it was added.
If you enlarge the window manually, you will see
that the slave widgets are placed centered against the
top edge. If you shrink it, you will see that the last
packed item (the button) will disappear first. (Man-
ual resizing disables autosizing. You can reenable it
with tkwm.geometry(tt,"").)

Widgets can be packed against other sides as
well. A widget along the top or bottom is allocated a
parcel just high enough to contain the widget, but oc-
cupying as much of the width of the container as pos-
sible, whereas widgets along the sides get a parcel of
maximal height, but just wide enough to contain it.
The following code may be illustrative (Figure 2):

tkdestroy(tt) # get rid of old example

tt <- tktoplevel()

edge <- c("top","right","bottom","left")

buttons <- lapply(1:4,

function(i) tkbutton(tt, text=edge[i]))

for (i in 1:4)

tkpack(buttons[[i]], side=edge[i],

fill="both")

R News ISSN 1609-3631

Vol. 1/3, September 2001 28

Figure 2: Geometry management by the packer

The fill argument causes each button to oc-
cupy its entire parcel. Similarly expand=TRUE causes
parcels to increase in width or height (depending on
the packing direction) to take up remaining space in
the container. This occurs after allotment of parcels;
in the above example only “left” can expand.

If an object does not fill its parcel, it needs to be
anchored. The anchor argument to tkpack can be set
to compass-style values like "n" or "sw" for place-
ment in the middle top, respectively bottom left. The
default is "center".

It is useful at this point to consider what the
packer algorithm implies for some typical layouts:

Simple vertical or horizontal stacking is of course
trivial, you just keep packing against the same side.

For a text widget with a scrollbar on the side, you
want fill="y" for the scrollbar and fill="both"
and expand=TRUE for the text area. The scrollbar
should be packed before the text widget so that the
latter shrinks first.

A text widget with scrollbar and a row of buttons
beneath it? You cannot do that with the packer al-
gorithm! This is where frames come in. These are
containers for further widgets with separate geome-
try management. So you pack the buttons inside a
frame, pack the frame against the bottom, then pack
the scrollbar and text widget.

The combination of the packer and frames gives
a lot of flexibility in creating GUI layouts. How-
ever, some things are tricky, notably lining widgets
up both vertically and horizontally.

Suppose you want multiple lines, each containing
an entry widget preceded by a label. With the packer
there is no simple way to keep the beginning of the
entry fields lined up.

Enter the grid manager. As the name suggests it
lays out widgets in rows and columns. Using this
manager the labeled-entry problem could be solved
as follows (Figure 3

t2 <- tktoplevel()

heading <- tklabel(t2, text="Registration form")

l.name <- tklabel(t2, text="Name")

l.age <- tklabel(t2, text="Age")

e.name <- tkentry(t2, width=30)

e.age <- tkentry(t2, width=3)

tkgrid(heading, columnspan=2)

tkgrid(l.name, e.name)

tkgrid(l.age, e.age)

tkgrid.configure(e.name, e.age, sticky="w")

tkgrid.configure(l.name, l.age, sticky="e")

Figure 3: A registration form using the grid manager

With the grid manager it is most convenient to
specify a full row at the time, although options let
you do it otherwise. The columnspan argument joins
grid cells horizontally. The sticky argument works
somewhat like anchoring in the packer. The value
can be any subset of n, s, e, and w and specifies that
the widget should stick to the specified sides of the
cell. If it contains opposite sides, e.g. both n and s,
the widget stretches to fill the space.

You can mix the geometry managers, although
not in the same master frame. Some parts of an appli-
cation may be best handled by the packer and others
by the grid manager.

Communication with widgets

We need a way to get data from widgets to and from
R, and a way to make things happen in response to
widget events. There are two general patterns for
this, namely control variables and callbacks.

Control variables associate the state of some as-
pect of a widget with a variable in Tcl. These
Tcl variables can be accessed from R as (pseudo-
)components of the tclvar object. So we could con-
trol the name entry field of the example above with

tkconfigure(e.name, textvariable="foo")

tclvar$foo <- "Hello, World"

and conversely any change to the content of the en-
try field is reflected in tclvar$foo This mechanism is
not optimal and will likely change in future versions of R!

Control variables are also used by checkbuttons,
radiobuttons, and scales. Radiobutton widgets allow
a value argument so that the button lights up when
the control variable has that value, and the variable
is given that value when the radiobutton is clicked.
A checkbutton will indicate whether its control vari-
able is 0 (FALSE) or not.

Callbacks are functions that are linked to GUI
events. Callbacks are often set up using arguments
named command.

For a simple example consider

t3 <- tktoplevel()

b <- tkbutton(t3, text = "Don’t press me!")

R News ISSN 1609-3631

Vol. 1/3, September 2001 29

tkpack(b)

change.text <- function() {

cat("OW!\n")

tkconfigure(b, text = "Don’t press me again!")

}

tkconfigure(b, command = change.text)

This callback function doesn’t take any argu-
ments, but others do. There are two ways to take
account of this, depending on whether the callback
is actively soliciting information or not. An example
of the latter is the scrollbar protocol as exemplified
below

t4 <- tktoplevel()

txt <- tktext(t4)

scr <- tkscrollbar(t4,

command=function(...) tkyview(txt,...))

tkconfigure(txt,

yscrollcommand=function(...) tkset(scr,...))

tkpack(scr, side="right", fill="y")

tkpack(txt, fill="both", expand=TRUE)

This sets up a bidirectional link: Manipulating
the scrollbar changes the view of the text widget and
vice versa. Some care is taken not to add a callback
that refers to a widget before the widget exists.

We don’t need to care what the arguments to the
callbacks are, only to pass them through to tkyview
and tkset respectively. In fact the arguments to
tkyview will be different depending on which part
of the scrollbar is engaged.

In Tcl, you can define a callback command as
myproc %x %y and myproc will be invoked with the
pointer coordinates as arguments. There are several
other “percent codes”. The parallel effect is obtained
in R by defining the callback with specific formal ar-
guments. From the tkcanvas demo:

plotMove <- function(x, y) {

x <- as.numeric(x)

y <- as.numeric(y)

tkmove(canvas, "selected",

x - lastX, y - lastY)

lastX <<- x

lastY <<- y

}

tkbind(canvas, "<B1-Motion>", plotMove)

The coordinates are passed as text strings, requir-
ing the use of as.numeric.

Events and bindings

The previous example showed a binding of a call-
back to a windows event, containing the event pat-
tern <B1-Motion> — mouse movement with Button 1
pressed.

An event pattern is a sequence of fields separated
by hyphens and enclosed in <>. There are three kinds
of fields, modifier, type, and detail, in that order. There
can be several modifier fields. A generic example is

<Control-Alt-Key-c>, where Control and Alt are
modifiers, Key is the event type, and c is the detail.
If c is left out any key matches. The Key part can be
omitted when there’s a character detail field. Simi-
larly, a numeric detail field is assumed to refer to a
button press event (notice that <Key-1> is different
from <1>).

Callbacks are associated with events using
tkbind, or sometimes tktag.bind or tkitembind.

Text widgets

The text widget in Tk embodies the functionality of a
basic text editor, allowing you to enter and edit text,
move around in the text with cursor control keys,
and mark out sections of text for cut-and-paste op-
erations. Here, we shall see how to add or delete text
and how to extract the text of pieces thereof. These
methods revolve around indices, tags, and marks.

A simple index is of the form line.char where
line is the line number and char is the character po-
sition within the line. In addition there are special
indices like end for the end of the text.

Tags provide a way of referring to parts of the
text. The part of the text that has been marked as
selected is tagged sel. Any tag can be used for in-
dexing using the notation tag.first and tag.last.

Marks are somewhat like tags, but provide names
for locations in the text rather than specific charac-
ters. The special mark insert controls and records
the position of the insertion cursor.

To extract the entire content of a text widget, you
say

X <- tkget(txt, "0.0", "end")

Notice that you have to give 0.0 as a character string,
not as a number. Notice also that the result of tkget
is a single long character string; you may wish to con-
vert it to a vector of strings (one element per line) us-
ing strsplit(X, "\n").

In a similar fashion, you can extract the selected
part of the text with

X <- tkget(txt, "sel.first", "sel.last")

However, there is a pitfall: If there is no selection, it
causes an error. You can safeguard against this by
checking that

tktag.ranges(txt, "sel") != ""

Inserting text at (say) the end of a file is done with

tkinsert(txt, "end", string)

The string needs to be a single string just like the one
obtained from tkget. If you want to insert an entire
character array, you will need to do something along
the lines of

tkinsert(txt, "end",

paste(deparse(ls), collapse="\n"))

R News ISSN 1609-3631

Vol. 1/3, September 2001 30

You can set the insertion cursor to the top of the text
with

tkmark.set(txt, "insert", "0.0")

tksee(txt, "insert")

The tksee function ensures that a given index is vis-
ible.

An insertion leaves the insertion mark in place,
but when it takes place exactly at the mark it is am-
biguous whether to insert before or after the mark.
This is controllable via mark gravity. The default is
“right” (insert before mark) but it can be changed
with

tkmark.gravity(txt, "insert", "left")

Creating menus

Tk menus are independent widgets. They can be
used as popup menus, but more often they attach to
the menu bar of a toplevel window, a menubutton,
or a cascade entry in a higher-level menu.

Menus are created in several steps. First you
setup the menu with tkmenu, then you add items
with tkadd. There are so many possible options for a
menu item that this is a more practicable approach.

Menu items come in various flavours. A com-
mand entry is like a button widget and invokes a
callback function. Cascade entries invoke secondary
menus. Checkbutton and radiobutton entries act like
the corresponding widgets and are used for optional
selections and switches. Special entries include sep-
arators which are simply non-active dividing lines
and tear-offs which are special entries that you can
click to detach the menu from its parent. The latter
are on by default but can be turned off by passing
tearoff=FALSE to tkmenu.

Here is a simple example of a menubutton with a
menu which contains three radiobutton entries:

tclvar$color<-"blue"

tt <- tktoplevel()

tkpack(mb <- tkmenubutton(tt, text="Color"))

m <- tkmenu(mb)

tkconfigure(mb,menu=m)

for (i in c("red", "blue", "green"))

tkadd(m, "radio", label=i, variable="color",

value=i)

A simple application: Scripting
widgets

The following code is a sketch of a scripting wid-
get (Figure 4. The widget can be used to edit mul-
tiple lines of code and submit them for execution. It
can load and save files using tk_getOpenFile and
tk_getSaveFile. For simplicity, the code is executed
with parse and eval.

Notice that tkcmd is used to call Tcl commands
that have no direct R counterpart. Future versions of
the tcltk package may define functions tkclose, etc.

Tcl has file functions that by and large do the
same as R connections do although they tend to work
a little better with other Tcl functions.

You may want to experiment with the code to add
features. Consider e.g. adding an Exit menu item, or
binding a pop-up menu to Button 3.

tkscript <- function() {

wfile <- ""

tt <- tktoplevel()

txt <- tktext(tt, height=10)

tkpack(txt)

save <- function() {

file <- tkcmd("tk_getSaveFile",

initialfile=tkcmd("file", "tail", wfile),

initialdir=tkcmd("file", "dirname", wfile))

if (!length(file)) return()

chn <- tkcmd("open", file, "w")

tkcmd("puts", chn, tkget(txt,"0.0","end"))

tkcmd("close", chn)

wfile <<- file

}

load <- function() {

file <- tkcmd("tk_getOpenFile")

if (!length(file)) return()

chn <- tkcmd("open", file, "r")

tkinsert(txt, "0.0", tkcmd("read", chn))

tkcmd("close", chn)

wfile <<- file

}

run <- function() {

code <- tkget(txt,"0.0","end")

e <- try(parse(text=code))

if (inherits(e, "try-error")) {

tkcmd("tk_messageBox",

message="Syntax error",

icon="error")

return()

}

cat("Executing from script window:",

"-----", code, "result:", sep="\n")

print(eval(e))

}

topMenu <- tkmenu(tt)

tkconfigure(tt, menu=topMenu)

fileMenu <- tkmenu(topMenu, tearoff=FALSE)

tkadd(fileMenu, "command", label="Load",

command=load)

tkadd(fileMenu, "command", label="Save",

command=save)

tkadd(topMenu, "cascade", label="File",

menu=fileMenu)

tkadd(topMenu, "command", label="Run",

command=run)

}

Further information

Some further coding examples are available in the
demos of the tcltk package.

R News ISSN 1609-3631

Vol. 1/3, September 2001 31

Figure 4: A simple scripting widget.

Most of the functions in the tcltk package are re-
ally just a thin layer covering an underlying Tcl com-
mand. Converting all the Tcl/Tk documentation for
R is a daunting task, so you have to make do with the
help for Tcl/Tk itself. This is fairly easy once you get
the hang of some simple translation rules.

For the tkbutton function, you would look at the
help for button. The R functions add a tk prefix to
avoid name clashes. The button command in Tcl/Tk
has a -text argument followed by the text string to
display. Such options are replaced in the R counter-
part by named arguments like text="B1". The argu-
ment value is a string, but logical or numerical val-
ues, as well as (callback) functions are automatically
converted.

When translating commands, there are a couple
of special rules which are briefly outlined below.

One general difference is that Tcl encodes the
widget hierarchy in the name of the widgets so that
widget .a has subwidgets .a.b and .a.c, etc. This is
impractical in R so instead of Tcl’s

button .a.b -text foo

we specify the parent directly in the widget creation
call

but <- tkbutton(parent, text="foo")

This pattern is used for all commands that create
widgets. Another difference is that Tcl has widget
commands like

.a.b configure -text fum

which in R is replaced by a command acting on a
widget

tkconfigure(but, text="fum")

Some widget commands have subcommands as in

.a.b selection clear 0 end

which are turned into separate functions

tkselection.clear(lb, 0, "end")

In a few cases, the translation rules create ambi-
guities — for instance there is both a general bind
command and a bind widget command for canvases.
This has been resolved by making the widget com-
mands tkitembind.

There is quite a large literature on Tcl and Tk. A
well-reputed book is Welch (2000). A smaller refer-
ence item is Raines and Tranter (1999), although it is
mostly a paper copy of online information. The main
web site is at http://tcl.activestate.com/.

The useful tclhelp program comes with the TclX
package. There is also a nice widget demo in the Tk
distribution.

Bibliography

Peter Dalgaard. The R-Tcl/Tk interface. In
Kurt Hornik and Fritz Leisch, editors, Pro-
ceedings of the 2nd International Workshop on
Distributed Statistical Computing, March 15-17,
2001, Technische Universität Wien, Vienna, Aus-
tria, 2001. URL http://www.ci.tuwien.ac.
at/Conferences/DSC-2001/Proceedings/. ISSN
1609-395X. 27

Paul Raines and Jeff Tranter. Tcl/Tk in a Nutshell.
O’Reilly, 1999. 31

Brent B. Welch. Practical Programming in Tcl and Tk.
Prentice-Hall PTR, New Jersey, 3rd edition, 2000.
31

Peter Dalgaard
University of Copenhagen, Denmark
P.Dalgaard@biostat.ku.dk

R News ISSN 1609-3631

http://tcl.activestate.com/
http://www.ci.tuwien.ac.at/Conferences/DSC-2001/Proceedings/
http://www.ci.tuwien.ac.at/Conferences/DSC-2001/Proceedings/
mailto:P.Dalgaard@biostat.ku.dk

Vol. 1/3, September 2001 32

wle: A Package for Robust Statistics using
Weighted Likelihood
by Claudio Agostinelli

The wle is a package for robust statistics using the
weighted-likelihood estimating equations approach.
This approach is different in many aspects from that
presented in Huber (1981) and Hampel et al. (1986).
It provides a general framework so that extensions
are simpler than in the classical setting. The main
feature is to provide first-order efficient (asymptot-
ically) and robust estimators in the sense of break-
down. The current version (0.6-1) of the package im-
plements most of the results presented in the litera-
ture.

In the next section we will introduce the weighted
likelihood methodology and review the present lit-
erature. In the section Package features we will give
some details about the current release and we will
provide an example of some functions.

Weighted likelihood

The definition of Weighted Likelihood Estimating
Equations (WLEE) was first proposed by Markatou
et al. (1997) for discrete distributions, then in Marka-
tou et al. (1998) the methods were extended to con-
tinuous models.

Let x1, x2, . . . , xn be an i.i.d. sample from the ran-
dom variable X with unknown density f (·) corre-
sponding to the probability measure F(·). We will
use the density m(·;θ) corresponding to the prob-
ability measure M(·;θ) and θ ∈ Θ as a model for
the random variable X. Note that in the maximum-
likelihood context we assume f (·) ≡ m(·;θT) (almost
surely) and θT ∈ Θ. Let u(x;θ) = ∂

∂θ log m(x;θ) be
the score function. Under regularity conditions the
maximum likelihood estimator of θ is a solution of
the likelihood equation ∑n

i=1 u(xi ;θ) = 0.
Given any point x in the sample space, Markatou

et al. (1998) construct a weight function w(x;θ, F̂n)
that depends on the chosen model distribution M
and the empirical cumulative distribution F̂n(t) =
∑n

i=1 1xi<t/n. Estimators for the parameter vector
θ are obtained as solutions to the set of estimating
equations:

n

∑
i=1

w(xi ;θ, F̂n)u(xi ;θ) = 0 (1)

The weight function

w(x;θ, F̂n) = min
{

1,
[A(δ(x;θ, F̂n)) + 1]+

δ(x;θ, F̂n) + 1

}

(where [·]+ indicates the positive part) takes values
in the interval [0, 1] by construction.

The quantity δ(x;θ, F̂n) is called the Pearson resid-
ual, defined as δ(x;θ, F̂n) = f ∗(x)/m∗(x;θ) − 1,
where f ∗(x) =

∫
k(x; t, h) dF̂n(t) is a kernel den-

sity estimator and m∗(x;θ) =
∫

k(x; t, h) dM(t;θ) is
the smoothed model density. Note that sometimes
f ∗(x) is a function of θ as in the regression case. The
Pearson residual expresses the agreement between
the data and the assumed probability model. The
function A(·) is a residual adjustment function, RAF,
(Lindsay, 1994) and it operates on Pearson residu-
als in the same way as the Huber ψ-function oper-
ates on the structural residuals. When A(δ) = δ

we have w(x;θ, F̂n) ≡ 1, and this corresponds to
maximum likelihood. Generally, the weights w use
functions A(·) that correspond to a minimum dis-
parity problem. For example, the function A(δ) =
2{(δ + 1)1/2 − 1} corresponds to Hellinger distance.
For an extensive discussion of the concept of RAF see
Lindsay (1994).

This weighting scheme provides first-order effi-
cient (asymptotically) and robust estimators in the
sense of breakdown, provided that one selects a root
by using the parallel disparity measure (Markatou
et al., 1998). However, the inspection of all roots is
useful for diagnostics and data analysis.

The estimating equations (1) are solved using a
re-weighting scheme. An algorithm based on re-
sampling techniques is used to identify the roots and
to provide starting values. Sub-samples of fixed di-
mension and without replication are sampled from
the dataset. From each of these sub-samples a max-
imum likelihood estimator is evaluated and used to
start the re-weighted algorithm.

To calculate the Pearson residuals we need to se-
lect the smoothing parameter h. Markatou et al.
(1998) select h2 = gσ2, where g is a constant inde-
pendent of the scale of the model which is selected
in a way such that it assigns a very small weight to
an outlying observation (Agostinelli and Markatou,
2001).

To illustrate the behaviour of the weight function,
let us consider its asymptotic value when the data
come from a mixture of two normal distributions,
f (x) = 0.9N(0, 1) + 0.1N(4, 1) (Figure 1). We set
g = 0.003 with a normal kernel and we use a loca-
tion normal family (M = {N(θ, 1), θ ∈ R}) as a
model for these data. In Figure 2 we report the Pear-
son residuals evaluated in the distribution of the ma-
jority of the data, that is in θ = 0, while in Figure 3
we report the corresponding weight function based
on the Hellinger Residual Adjustment Function.

R News ISSN 1609-3631

Vol. 1/3, September 2001 33

−2 0 2 4 6

0.
00

0.
10

0.
20

0.
30

x

0.
9

N
(0

,1
)

+
 0

.1
 N

(4
,1

)

Figure 1: The contaminated normal density distribu-
tion

−2 0 2 4 6

0e
+

00
2e

+
05

4e
+

05
6e

+
05

8e
+

05

x

d(
x,

0,
0.

9
N

(0
,1

)
+

 0
.1

 N
(4

,1
))

Figure 2: The (asymptotic) Pearson residuals.

−2 0 2 4 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

w
(x

,0
,0

.9
 N

(0
,1

)
+

 0
.1

 N
(4

,1
))

Figure 3: The (asymptotic) weights based on
Hellinger Residual Adjustment Function.

Agostinelli (1998a,b) extended the methodol-
ogy to the regression model while Agostinelli
and Markatou (1998) studied the one-step esti-
mator based on high breakdown initial estima-
tor. Agostinelli (2000, 2001a,b) developed robust
model selection procedures based on weighted ver-

sions of Akaike Information Criterion, Mallows Cp,
Cross-Validation and Stepwise. Agostinelli (1998a,
2001d) and Agostinelli and Markatou (2001) defined
weighted versions of the classical likelihood test
functions: likelihood ratio, Wald and Rao (or score)
tests. Markatou (2000, 2001) studied the estimation
problem in a mixture model. Agostinelli (2001c) pro-
posed estimation procedures for ARMA models.

Package features

Version 0.6-1 of package wle implements almost all
the methods and procedures presented above. In
particular, there are functions providing estimates
the parameters for the binomial and Poisson mod-
els, and the univariate and multivariate normal and
gamma models. A function is devoted to the regres-
sion model with normal errors and model-selection
procedures are available for this case. The weighted
t-test is available for one and two samples (paired
and unpaired), with a function that works very sim-
ilarly to the t.test function. The weighted F-test
(Agostinelli, 2001b) may be used for comparison of
two variances for objects generated by wle.normal
and wle.lm in the same way as the var.test func-
tion. Finally, a preliminary version for estimating the
parameters of a univariate normal mixture models is
available.

In the following example we illustrate the func-
tions wle.lm and wle.cv together with the re-
lated methods. We generated a dataset of 70 ob-
servations. The first 60 observations follow the
Y = 8 log (X + 1) + ε regression model with ε ∼
N(0, 0.6) while the last 10 observations are a cluster
of observations from the same model but with resid-
uals from ε ∼ N(−4, 0.6). The contamination level is
about 14%.

> library(wle)

> set.seed(1234)

> x.data <- c(runif(60,20,80), runif(10,73,78))

> e.data <- rnorm(70,0,0.6)

> y.data <- 8*log(x.data+1)+e.data

> y.data[61:70] <- y.data[61:70] - 4

>

> x.model <- function(x) 8*log(x+1)

> x.log.data <- x.model(x.data)/8

First, we show how the wle.lm works: see Figure 4
on page 35. The function uses formula for describ-
ing the regression model structure as in lm. The most
important parameters are boot, group and num.sol.
The first parameter is used to control the number of
bootstrap sub-samples, i.e., the number of starting
values the function has to use in order to look for
different roots of the estimating equation.

The second parameter is the size of the sub-
samples; it can not be less than the number of the

R News ISSN 1609-3631

Vol. 1/3, September 2001 34

unknown parameters since we have to obtain max-
imum likelihood estimates from those sub-samples.
Markatou et al. (1998) empirically found that in most
cases, it was sufficient to let group equal to the num-
ber of parameters to be estimated in order to produce
reasonable estimates. On the other hand, in particu-
lar cases, this could raise some problems, for instance
in the presence of highly correlated explanatory vari-
ables. For this reason the default value is the maxi-
mum of the number of parameters and one quarter of
the sample size. In our example we set group equal
the number of parameters.

The third parameter num.sol controls the maxi-
mum number of roots we expect to find. The algo-
rithm is stopped when it has found num.sol roots,
regardless of the number of bootstrap replications.
Two roots are considered to be distinct if they have at
least one component bigger than the equal parame-
ter in absolute difference.

The wle.lm function has summary and plot meth-
ods. The summary is very similar to that gen-
erated for lm: one summary is reported for each
root. wle.lm has found the “robust” root and the
MLE-like root. The t-test is performed accord-
ingly with the weighted Wald test for each root
(Agostinelli, 2001d; Agostinelli and Markatou, 2001).
Moreover, the weighted residuals are obtained as
weights ∗ residuals without squaring the weights. In
Figure 5 we present the dataset, the true model,
the two models suggested by the weighted likeli-
hood and the one found by maximum likelihood.

20 30 40 50 60 70 80

24
26

28
30

32
34

X

Y

outliers
true model
wle, root 1
wle, root 2
mle

Figure 5: The dataset and the estimated model by
wle.lm and lm.

The plot method helps to understand the dif-
ference between the roots. The first plot repre-
sents in the main diagonal the weights related to
each root. The observations with weights close to
one are shown in green, while the possible out-
liers with weights close to zero are displayed in
red. The threshold is set by level.weight (with de-
fault value 0.5). In the lower triangle we compare
the weight given by different roots to each obser-
vation while in the upper triangle the (unweighted)

residuals are compared; the bisector is reported.

●●●●
●
●●●●

●●
●●●●●

●

●●●

●

●●●●
●
●
●
●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●

●●●●●●●●●●

0 10 30 50 70

0.
0

0.
4

0.
8

Weights of the root: 1

Observations

W
ei

gh
ts

●
●●●● ●●●●

●

●●●●●●
●

●●●● ●●●
●●
●

●

●●●●●●●●●● ●●●●

●

●●● ●●●
●
●●●●

●
●●●●●●

●

●
●

●

●

●●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
5

0.
7

0.
9

Weights

Weights of the root: 1

W
ei

gh
ts

 o
f t

he
 r

oo
t:

 2

●
●

●
●

●

●

●● ●

●

●●● ●
●

●●

●
●

●

●

●

●
●

●●
●

●

●
●●●●

●●
●

●

●

●

●●

●

●

● ●

●
●

●

●●

●
●

●●

●●
●●●

●

●●

●●

●●
●●

●
●

−3 −2 −1 0 1

−
4

−
2

0

Residuals

Residuals of the root: 2

R
es

id
ua

ls
 o

f t
he

 r
oo

t:
 1

●
●●●●●●●●

●

●●●●●●
●
●●●●●●●

●●
●

●

●●●●●●●●●●●●●●

●

●●●●●●
●
●●●●

●
●●●●●●

●

●
●

●

●

●●

●

●

0 10 30 50 70

0.
5

0.
7

0.
9

Weights of the root: 2

Observations

W
ei

gh
ts

Figure 6: Plot from the plot method.

Then, for each root we present the qq-norm of
the unweighted and weighted residuals and resid-
uals vs fitted values plots. The observations with
weights less than level.weight are reported in red.

26 28 30 32 34

−
4

−
2

0

Fitted values

R
es

id
ua

ls

26 28 30 32 34

−
1.

0
0.

0
1.

0

Fitted values

W
ei

gh
te

d
re

si
du

al
s

−2 −1 0 1 2

−
4

−
2

0

Normal Q−Q Plot

Theoretical Quantiles
S

am
pl

e
Q

ua
nt

ile
s

−2 −1 0 1 2

−
1.

0
0.

0
1.

0
Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

Figure 7: Plot from the plot method, root 1.

●
●●

●

●

●

●●
●

●

●
●

●
●

●
●

●

● ●
●

●

●

●
●

●●
●

●
●

●
● ●

●
●●

●
●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●
●●

●

●
●

●●

●●●●●
●

26 28 30 32 34

−
3

−
1

1

Fitted values

R
es

id
ua

ls

●
●
●

●

●

●

●●
●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●●
●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●
●●

●

●●

●●●●●●●●

26 28 30 32 34

−
2

0
1

Fitted values

W
ei

gh
te

d
re

si
du

al
s

●
●●

●

●

●

●●
●

●

●
●

●
●

●
●

●

● ●
●

●

●

●
●

●●
●

●
●

●
●●

●
●●

●
●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●
●●

●

●
●

●●

● ●●●●
●

−2 −1 0 1 2

−
3

−
1

1

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

●
●

●

●

●

●

●●
●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●
●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●
●●

●

●●

●●●● ●●●●

−2 −1 0 1 2

−
2

0
1

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

Figure 8: Plot from the plot method, root 2.

Now, we try to identify a good model for our
dataset given a set of possible explanatory variables
that include the “true” ones. Such variables are

R News ISSN 1609-3631

Vol. 1/3, September 2001 35

> wle.lm.result <-

+ wle.lm(y.data~x.log.data, boot=50,

+ group=3, num.sol=3)

> summary(wle.lm.result)

Call:

wle.lm(formula = y.data ~ x.log.data, boot = 50,

group = 3, num.sol = 3)

Root 1

Weighted Residuals:

Min 1Q Median 3Q Max

-1.30752 -0.32307 -0.04171 0.32204 1.21939

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.09666 0.90864 -0.106 0.916

x.log.data 8.00914 0.23108 34.660 <2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01

‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.5705 on 56.80948 degrees of freedom

Multiple R-Squared: 0.9548,

Adjusted R-squared: 0.9452

F-statistic: 1201 on 1 and 56.80948

degrees of freedom, p-value: 0

Call:

wle.lm(formula = y.data ~ x.log.data, boot = 50,

group = 3, num.sol = 3)

Root 2

Weighted Residuals:

Min 1Q Median 3Q Max

-2.3863 -0.4943 0.2165 0.7373 1.6909

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.9007 1.7282 2.836 0.00612 **

x.log.data 6.6546 0.4338 15.340 < 2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01

‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.151 on 63.58554 degrees of freedom

Multiple R-Squared: 0.7873,

Adjusted R-squared: 0.7692

F-statistic: 235.3 on 1 and 63.58554

degrees of freedom, p-value: 0

Figure 4: Using wle.lm

R News ISSN 1609-3631

Vol. 1/3, September 2001 36

highly correlated, and a model with just one of them
could be a good model.

> xx <- cbind(x.data,x.data^2,x.data^3,

+ log(x.data+1))

> colnames(xx) <- c("X","X^2","X^3","log(X+1)")

> cor(xx)

X X^2 X^3 log(X+1)

X 1.0000000 0.9913536 0.9718489 0.9879042

X^2 0.9913536 1.0000000 0.9942109 0.9595103

X^3 0.9718489 0.9942109 1.0000000 0.9253917

log(X+1) 0.9879042 0.9595103 0.9253917 1.0000000

We address the problem by using wle.cv which per-
forms Weighted Cross-Validation. For comparison
we use mle.cv which performs the classical Cross-
Validation procedure (Shao, 1993). Since the proce-
dure uses weights based on the full model, a cru-
cial problem arises when multiple roots are present
in this model. Currently the package chooses the
root with the smallest scale parameter: this should
work fine in most cases. In the next release of the
package we will give the users the opportunity to
choose the root by themselves. As seen in Figure 9
on page 37, while wle.cv suggests the “true” model,
mle.cv chooses models with three explanatory vari-
ables.

Next, we estimate the suggested model; only
one root is found (see Figure 10 on page 38). In
Figure 11 we report the suggested models by the
weighted likelihood and the classical procedure.

0 20 40 60 80 100

10
15

20
25

30
35

40

X

Y

outliers
true model
wle
mle

Figure 11: The model suggested by wle.cv and
mle.cv.

Future developments

The next version of the package will probably in-
clude functions for autoregressive time-series. In
particular, there will be functions for seasonal ARI
models, with weighted autocorrelation functions,
unit-root tests and perhaps a model selection proce-
dure based on weighted Akaike Information Crite-
rion for the order of the ARI model. Functions will
be provided for the logistic regression model. More-
over, we will start to prepare a document to illustrate
the use of the functions in applications.

Bibliography

C. Agostinelli. Inferenza statistica robusta basata sulla
funzione di verosimiglianza pesata: alcuni sviluppi.
PhD thesis, Dipartimento di Scienze Statistiche,
Università di Padova, 1998a. 33

C. Agostinelli. Verosimiglianza pesata nel modello di
regressione lineare. In XXXIX Riunione scientifica
della Società Italiana di Statistica, Sorrento, 1998b. 33

C. Agostinelli. Robust model selection by cross-
validation via weighted likelihood methodology.
Submitted to Australian and New Zealand Journal of
Statisitcs, 2000. 33

C. Agostinelli. Robust model selection in regression
via weighted likelihood methodology. To appear
in Statistics & Probability Letters, 2001a. 33

C. Agostinelli. Robust stepwise regression. To ap-
pear in Journal of Applied Statistics, 2001b. 33

C. Agostinelli. Robust time series estimation via
weighted likelihood. Presented to the first Inter-
national Conference on Robust Statistics, (poster
session), Vorau, Austria, 2001c. 33

C. Agostinelli. Un approccio robusto alla verifica
d’ipotesi basato sulla funzione di verosimiglianza
pesata – robust testing hypotheses via weighted
likelihood function. To appear in Statistica, 2001d.
In Italian. 33, 34

C. Agostinelli and M. Markatou. A one–step robust
estimator for regression based on the weighted
likelihood reweighting scheme. Statistics & Prob-
ability Letters, 37(4):341–350, 1998. 33

C. Agostinelli and M. Markatou. Test of hypothe-
ses based on the weighted likelihood methodol-
ogy. Statistica Sinica, 11(2):499–514, 2001. 32, 33,
34

F. R. Hampel, E. M. Ronchetti, P. J. Rousseeuw, and
W. A. Stahel. Robust Statistics: The Approach based
on Influence Functions. John Wiley, New York, 1986.
32

P. J. Huber. Robust Statistics. John Wiley, New York,
1981. 32

B. G. Lindsay. Efficiency versus robustness: The case
for minimum hellinger distance and related meth-
ods. Annals of Statistics, 22:1018–1114, 1994. 32

M. Markatou. Mixture models, robustness and the
weighted likelihood methodology. Biometrics, 56:
483–486, 2000. 33

R News ISSN 1609-3631

Vol. 1/3, September 2001 37

> wle.cv.result <- wle.cv(y.data~xx, boot=50,

+ group=6, num.sol=3)

> summary(wle.cv.result, num.max=10)

Call:

wle.cv(formula = y.data ~ xx, boot = 50,

group=6, num.sol = 3)

(Intercept) xxX xxX^2 xxX^3 xxlog(X+1) wcv

[1,] 0 0 0 0 1 0.3395

[2,] 0 1 0 0 1 0.3631

[3,] 0 0 1 0 1 0.3632

[4,] 0 0 0 1 1 0.3635

[5,] 1 0 0 0 1 0.3639

[6,] 0 0 1 1 1 0.3868

[7,] 0 1 0 1 1 0.3881

[8,] 0 1 1 0 1 0.3896

[9,] 1 0 0 1 1 0.3925

[10,] 1 0 1 0 1 0.3951

Printed the first 10 best models

> mle.cv.result <- mle.cv(y.data~xx)

> summary(mle.cv.result, num.max=10)

Call:

mle.cv(formula = y.data ~ xx)

Cross Validation selection criteria:

(Intercept) xxX xxX^2 xxX^3 xxlog(X+1) cv

[1,] 1 1 0 1 0 1.557

[2,] 1 1 1 0 0 1.560

[3,] 0 0 1 1 1 1.579

[4,] 0 1 0 1 1 1.581

[5,] 0 0 0 1 1 1.584

[6,] 0 1 1 0 1 1.589

[7,] 1 0 1 1 0 1.593

[8,] 1 0 0 1 1 1.594

[9,] 1 0 1 0 1 1.617

[10,] 0 0 1 0 1 1.620

Printed the first 10 best models

Figure 9: Finding a good model using wle.cv and mle.cv

R News ISSN 1609-3631

Vol. 1/3, September 2001 38

> wle.lm.result.cv <- wle.lm(y.data~x.log.data

+ -1, boot=50, group=3, num.sol=3)

> summary(wle.lm.result.cv)

Call:

wle.lm(formula = y.data ~ x.log.data - 1,

boot = 50, group = 3, num.sol = 3)

Root 1

Weighted Residuals:

Min 1Q Median 3Q Max

-1.30476 -0.32233 -0.03861 0.32276 1.21646

Coefficients:

Estimate Std. Error t value Pr(>|t|)

x.log.data 7.98484 0.01874 426.1 <2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01

‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.5649 on 57.76524 degrees of freedom

Multiple R-Squared: 0.9997,

Adjusted R-squared: 0.9996

F-statistic: 1.815e+05 on 1 and 57.76524

degrees of freedom, p-value: 0

Figure 10: Fitting the model suggested by weighted cross-validation.

M. Markatou. A closer look at the weighted likeli-
hood in the context of mixtures. In C. A. Charalam-
bides, M. V. Koutras, and N. Balakrishnan, editors,
Probability and Statistical Models with Applications,
pages 447–467. Chapman and Hall/CRC, 2001. 33

M. Markatou, A. Basu, and B. G. Lindsay. Weighted
likelihood estimating equations: The discrete case
with applications to logistic regression. Journal of
Statistical Planning and Inference, 57:215–232, 1997.
32

M. Markatou, A. Basu, and B. G. Lindsay. Weighted
likelihood estimating equations with a bootstrap

root search. Journal of the American Statistical Asso-
ciation, 93:740–750, 1998. 32, 34

J. Shao. Linear model selection by cross-validation.
Journal of the American Statistical Association, 88:
486–494, 1993. 36

Claudio Agostinelli
Dipartimento di Statistica
Università Cà Foscari di Venezia
30125, Venezia
claudio@unive.it

Changes on CRAN
by Kurt Hornik and Friedrich Leisch

CRAN packages

The following extension packages from ‘src/contrib’
were added since the last newsletter.

AnalyzeFMRI Functions for I/O, visualisation and
analysis of functional Magnetic Resonance
Imaging (fMRI) datasets stored in the ANA-
LYZE format. By J L Marchini.

EMV Estimation of missing values in a matrix by a
k-th nearest neighbors algorithm. By Raphael
Gottardo.

Rwave Rwave is a collection of R functions
which provide an environment for the Time-
Frequency analysis of 1-D signals (and espe-
cially for the wavelet and Gabor transforms
of noisy signals). It is based on the book:
‘Practical Time-Frequency Analysis: Gabor and
Wavelet Transforms with an Implementation
in S’, by Rene Carmona, Wen L. Hwang and

R News ISSN 1609-3631

mailto:claudio@unive.it

Vol. 1/3, September 2001 39

Bruno Torresani, Academic Press (1998). S
original by Rene Carmona, R port by Brandon
Whitcher.

car Contains mostly functions for applied regres-
sion, linear models, and generalized linear
models, with an emphasis on regression diag-
nostics, particularly graphical diagnostic meth-
ods. By John Fox.

diamonds Functions for illustrating aperture-4 dia-
mond partitions in the plane, or on the sur-
face of an octahedron or icosahedron, for use
as analysis or sampling grids. By Denis White.

fastICA Implementation of FastICA algorithm to
perform Independent Component Analysis
(ICA) and Projection Pursuit. By J L Marchini
and C Heaton.

fields A collection of programs for curve and func-
tion fitting with an emphasis on spatial data.
The major methods implemented include cubic
and thin plate splines, universal Kriging and
Kriging for large data sets. The main feature
is that any covariance function implemented in
R can be used for spatial prediction. By Doug
Nychka.

pcurve Fits a principal curve to a numeric multi-
variate dataset in arbitrary dimensions. Pro-
duces diagnostic plots. Also calculates Bray-
Curtis and other distance matrices and per-
forms multi-dimensional scaling and princi-
pal component analyses. S original by Trevor
Hastie, S+ library by Glenn De’ath, R port by
Chris Walsh.

pixmap Functions for import, export, plotting and
other manipulations of bitmapped images. By
Friedrich Leisch and Roger Bivand.

rpvm Provides interface to PVM APIs, and exam-
ples and documentation for its use. By Na
(Michael) Li and A. J. Rossini.

sem Contains functions for fitting general linear
structural equation models (with observed and
unobserved variables) by the method of maxi-
mum likelihood using the RAM approach, and
for fitting structural equations in observed-
variable models by two-stage least squares. By
John Fox.

sptests A collection of tests for spatial autocorrela-
tion, including global Moran’s I and Geary’s C.
By Roger Bivand.

spweights A collection of functions to create spatial
weights matrix objects from polygon contigui-
ties, from point patterns by distance and tesse-
lations, for summarising these objects, and for

permitting their use in spatial data analysis. By
Roger Bivand and Nicholas Lewin-Koh.

vegan Various help functions for community ecolo-
gists. By Jari Oksanen.

waveslim Basic wavelet routines for time series
analysis, based on wavelet methodology de-
veloped in ‘Wavelet Methods for Time Series
Analysis’, by D. B. Percival and A. T. Walden,
Cambridge University Press (2000), along with
‘An Introduction to Wavelets and Other Filter-
ing Methods in Finance and Economics’ by R.
Gencay, F. Selcuk and B. Whitcher, Academic
Press (2001). By Brandon Whitcher.

CRAN mirrors the R packages from the Omega-
hat project in directory ‘src/contrib/Omegahat’. The
following are recent additions:

SASXML Example for reading XML files in SAS 8.2
manner. By Duncan Temple Lang.

Sxslt An extension module for libxslt, the XML-XSL
document translator, that allows XSL functions
to be implemented via R functions.

Checking packages

The current development version of R (the forthcom-
ing 1.4.0) features a much more sophisticated test
suite for checking packages with the R CMD check
utility. Especially the checks for consistency between
code and documentation are much better, and we
have started to use these checks for all contributions
to CRAN. Several contributors to CRAN already had
the frustrating experience that their package passed
R CMD check on their machine (running 1.3.1) with-
out a warning, and we responded along the lines of
“thanks for your contribution to the R project, but perhaps
you find some time to fix . . . ”.

We want to keep the quality of R as high as possi-
ble, and with that we mean the whole community
effort, not only the base system. R would not be
what it is today without all those wonderful pack-
ages contributed to CRAN. As mentioned above, the
new suite of checks will be released as part of R 1.4.0,
in the meantime we would like to invite all package
developers to download a CVS snapshot of the de-
velopment version and run it from there.

Kurt Hornik
Wirtschaftsuniversität Wien, Austria
Technische Universität Wien, Austria
Kurt.Hornik@R-project.org

Friedrich Leisch
Technische Universität Wien, Austria
Friedrich.Leisch@ci.tuwien.ac.at

R News ISSN 1609-3631

mailto:Kurt.Hornik@R-project.org
mailto:Friedrich.Leisch@ci.tuwien.ac.at

Vol. 1/3, September 2001 40

Changes in R
by the R Core Team

New features in version 1.3.1

• massage-examples is now a Perl script and
about 50x faster.

• On Unix(-alike) systems the default pager is
now determined during configuration, and is
‘less’ if available, otherwise ‘more’ (and not
‘more -s’ as previously).

• configure now tests for strptime functions that
fail on inputs before 1970 (found on Irix). It no
longer checks for the SCSL and SGIMATH li-
braries on Irix.

• New formula interface to cor.test() in pack-
age ctest.

• "NA" is now a valid color name (as NA has been
a valid integer color).

• pairs() function has a new ‘gap’ argument for
adjusting the spacing between panels.

• R CMD check has a new test for unbalanced
braces in Rd files.

• readBin() has a new argument ‘signed’ to sim-
plify reading unsigned 8- and 16-bit integers.

• New capabilities() option "cledit".

• Modified restore code to give clearer error mes-
sages in some cases.

New development model

Previously, there were two development versions of
R: one for fixing bugs in the current release (‘sta-
ble’) and one for adding new features (‘unstable’).
This two-tier model, which has been successful for
some open source projects, did not optimally meet
the needs of the R Core development team. Hence, as
of the release of R 1.3.1, there are now three develop-
ment versions of R, working towards the next patch
(‘r-patched’), minor (‘r-devel’), and major (‘r-ng’) re-
leases of R, respectively. Version r-patched is for bug
fixes mostly. New features are typically introduced
in r-devel. Version r-ng will eventually become the
next generation of R. The three versions correspond
to the R ‘major.minor.patchlevel’ numbering scheme.

Personalia

Martyn Plummer, already a key contributor to the
R project and in particular maintainer of the Red-
Hat i386 GNU/Linux binary distribution and add-on
package coda, has taken over as maintainer of the R
GNOME interface.

Editors:
Kurt Hornik & Friedrich Leisch
Institut für Statistik und Wahrscheinlichkeitstheorie
Technische Universität Wien
Wiedner Hauptstraße 8-10/1071
A-1040 Wien, Austria

Editor Programmer’s Niche:
Bill Venables

Editorial Board:
Douglas Bates, John Chambers, Peter Dal-
gaard, Robert Gentleman, Stefano Iacus, Ross
Ihaka, Thomas Lumley, Martin Maechler, Guido
Masarotto, Paul Murrell, Brian Ripley, Duncan
Temple Lang and Luke Tierney.

R News is a publication of the R project for statistical

computing, communications regarding this publica-
tion should be addressed to the editors. All articles
are copyrighted by the respective authors. Please
send submissions to the programmer’s niche col-
umn to Bill Venables, all other submissions to Kurt
Hornik or Friedrich Leisch (more detailed submis-
sion instructions can be found on the R homepage).

R Project Homepage:
http://www.R-project.org/

Email of editors and editorial board:
firstname.lastname @R-project.org

This newsletter is available online at
http://cran.R-project.org/doc/Rnews/

R News ISSN 1609-3631

http://www.R-project.org/
http://cran.R-project.org/doc/Rnews/

	Editorial
	Porting R to Darwin/X11 and Mac OS X
	Mac OS X
	Application environments
	User experience
	Porting problems
	Fink
	R

	RPVM: Cluster Statistical Computing in R
	Introduction
	Installation
	Installing PVM
	Setting up RPVM
	A sample RPVM session

	Features
	Using RPVM
	Strategies for parallel programming
	Example

	Discussion

	strucchange: Testing for Structural Change in Linear Regression Relationships
	Introduction
	Generalized fluctuation tests
	F tests
	Application
	Summary

	Programmer's Niche: Macros in R
	More on Spatial Data Analysis
	Introduction
	The splancs package
	Spatial autocorrelation
	Spatial locations
	Prospects

	Object-Oriented Programming in R
	S language philosophy and style
	The OOP model
	OOP in R
	Defining classes
	Further information

	In Search of C/C++ & FORTRAN Routines
	The current system
	The default mechanism
	Registering routines
	Extended applications
	Building the table automatically
	Summary

	Support Vector Machines
	Basic concept
	Usage in R
	Examples
	Classification
	Non-linear epsilon-regression

	Elements of the svm object
	Other main features
	Tips on practical use
	Conclusion

	A Primer on the R-Tcl/Tk Package
	Introduction
	Widgets
	Geometry managers
	Communication with widgets
	Events and bindings
	Text widgets
	Creating menus
	A simple application: Scripting widgets
	Further information

	wle: A Package for Robust Statistics using Weighted Likelihood
	Weighted likelihood
	Package features
	Future developments

	Changes on CRAN
	Changes in R
	New features in version 1.3.1
	New development model
	Personalia

