First, we’ll load up some time series data.
attribute_file<-system.file('extdata/yahara_alb_attributes.csv', package = "ncdfgeom")
attributes <- read.csv(attribute_file, colClasses='character')
lats <- as.numeric(attributes$YCOORD)
lons <- as.numeric(attributes$XCOORD)
alts <- rep(1,length(lats)) # Making up altitude for the sake of demonstration.We now have vectors of latitudes, longitudes, altitudes for each of our time series.
timeseries_file <- system.file('extdata/yahara_alb_gdp_file.csv', package = "ncdfgeom")
raw_data <- geoknife::parseTimeseries(timeseries_file, delim=',', with.units=TRUE)
timeseries_data <- raw_data[2:(ncol(raw_data) - 3)]
time <- raw_data$DateTime
long_name <- paste(raw_data$variable[1], 'area weighted', raw_data$statistic[1], 'in',
raw_data$units[1], sep=' ')
meta <- list(name=raw_data$variable[1], long_name=long_name)Now we have the timeseries_data data.frame of timeseries data, the time vector of timesteps, and a bit of metadata for the timeseries variable that we will write into the NetCDF file.
nc_summary<-'example summary'
nc_date_create<-'2099-01-01'
nc_creator_name='example creator'
nc_creator_email='example@test.com'
nc_project='example ncdfgeom'
nc_proc_level='just an example no processing'
nc_title<-'example title'
global_attributes<-list(title = nc_title,
summary = nc_summary,
date_created = nc_date_create,
creator_name = nc_creator_name,
creator_email = nc_creator_email,
project = nc_project,
processing_level = nc_proc_level)
ncdfgeom::write_timeseries_dsg(nc_file = "demo_nc.nc",
instance_names = names(timeseries_data),
lats = lats,
lons = lons,
alts = alts,
times = time,
data = timeseries_data,
data_unit = raw_data$units[1],
data_prec = 'double',
data_metadata = meta,
attributes = global_attributes) -> nc_file
#> Warning in create.nc(nc_file, large = TRUE): Argument 'large' is
#> deprecated; please specify 'format' insteadNow we have a NetCDF file with reference spatial information for each time series, and a single timeseries variable.
The file has three dimensions.
ncmeta::nc_dims(nc_file)
#> # A tibble: 3 x 4
#> id name length unlim
#> <int> <chr> <dbl> <lgl>
#> 1 0 instance 71 FALSE
#> 2 1 time 730 FALSE
#> 3 2 instance_name_char 2 FALSEThe file has variables for latitude, longitude, altitude, timeseries IDs, and a data variable.
ncmeta::nc_vars(nc_file)
#> # A tibble: 6 x 5
#> id name type ndims natts
#> <int> <chr> <chr> <int> <int>
#> 1 0 instance_name NC_CHAR 2 2
#> 2 1 time NC_DOUBLE 1 4
#> 3 2 lat NC_DOUBLE 1 4
#> 4 3 lon NC_DOUBLE 1 4
#> 5 4 alt NC_DOUBLE 1 4
#> 6 5 BCCA_0-125deg_pr_day_ACCESS1-0_rcp45_r1i1p1 NC_DOUBLE 2 4The primary dimensions in the file are of length, number of time steps and number of time series.
ncmeta::nc_dims(nc_file)
#> # A tibble: 3 x 4
#> id name length unlim
#> <int> <chr> <dbl> <lgl>
#> 1 0 instance 71 FALSE
#> 2 1 time 730 FALSE
#> 3 2 instance_name_char 2 FALSEThe header of the resulting NetCDF file looks like:
#> netcdf demo_nc {
#> dimensions:
#> instance = 71 ;
#> time = 730 ;
#> instance_name_char = 2 ;
#> variables:
#> char instance_name(instance, instance_name_char) ;
#> instance_name:long_name = "Station Names" ;
#> instance_name:cf_role = "timeseries_id" ;
#> double time(time) ;
#> time:units = "days since 1970-01-01 00:00:00" ;
#> time:missing_value = -999. ;
#> time:long_name = "time of measurement" ;
#> time:standard_name = "time" ;
#> double lat(instance) ;
#> lat:units = "degrees_north" ;
#> lat:missing_value = -999. ;
#> lat:long_name = "latitude of the observation" ;
#> lat:standard_name = "latitude" ;
#> double lon(instance) ;
#> lon:units = "degrees_east" ;
#> lon:missing_value = -999. ;
#> lon:long_name = "longitude of the observation" ;
#> lon:standard_name = "longitude" ;
#> double alt(instance) ;
#> alt:units = "m" ;
#> alt:missing_value = -999. ;
#> alt:long_name = "vertical distance above the surface" ;
#> alt:standard_name = "height" ;
#> double BCCA_0-125deg_pr_day_ACCESS1-0_rcp45_r1i1p1(instance, time) ;
#> BCCA_0-125deg_pr_day_ACCESS1-0_rcp45_r1i1p1:units = "mm/d" ;
#> BCCA_0-125deg_pr_day_ACCESS1-0_rcp45_r1i1p1:missing_value = -2147483648. ;
#> BCCA_0-125deg_pr_day_ACCESS1-0_rcp45_r1i1p1:long_name = "BCCA_0-125deg_pr_day_ACCESS1-0_rcp45_r1i1p1 area weighted MEAN in mm/d" ;
#> BCCA_0-125deg_pr_day_ACCESS1-0_rcp45_r1i1p1:coordinates = "time lat lon alt" ;
#>
#> // global attributes:
#> :Conventions = "CF-1.8" ;
#> :featureType = "timeSeries" ;
#> :cdm_data_type = "Station" ;
#> :standard_name_vocabulary = "CF-1.8" ;
#> :title = "example title" ;
#> :summary = "example summary" ;
#> :date_created = "2099-01-01" ;
#> :creator_name = "example creator" ;
#> :creator_email = "example@test.com" ;
#> :project = "example ncdfgeom" ;
#> :processing_level = "just an example no processing" ;
#> }
This file can be read back into R with the function read_timeseries_dsg. The response is a list of variables as shown below.
timeseries_dataset <- ncdfgeom::read_timeseries_dsg(nc_file)
names(timeseries_dataset)
#> [1] "time" "lats" "lons"
#> [4] "alts" "varmeta" "data_unit"
#> [7] "data_prec" "data_frames" "global_attributes"time, lats, lons, and alts are vectors that apply to the whole dataset.varmeta has one entry per timeseries variable read from the NetCDF file and contains the name and long_name attribute of each variable.data_unit and data_prec contain units and precision metadata for each variable.data_frames is a list containing one data.frame for each variable read from the NetCDF file.global_attributes contains standard global attributes found in the file. All of the variables that have one element per timeseries variable, are named the same as the NetCDF variable names so they can be accessed by name as shown below.