Estimation and Prediction Methods for High-Dimensional Mixed Frequency Time Series Data


[Up] [Top]

Documentation for package ‘midasml’ version 0.0.5

Help Pages

midasml-package Estimation and Prediction Methods for High-Dimensional Mixed Frequency Time Series Data
apply_transform Time series matrix transformation
beta_w Beta density polynomial weights
dateMatch Match dates
expalmon_w Exponential Almon polynomial weights
gb Gegenbauer polynomials shifted to [a,b]
lb Legendre polynomials shifted to [a,b]
macro_midasml GDP nowcasting using midasML approach example data
market_ret SNP500 returns
midasml Estimation and Prediction Methods for High-Dimensional Mixed Frequency Time Series Data
midasml_forecast MIDAS ML regression prediction function
midas_ardl ARDL-MIDAS regression
midas_dl DL-MIDAS regression
mixed_freq_data MIDAS data structure
mixed_freq_data_mhorizon MIDAS data structure
mixed_freq_data_single MIDAS data structure
monthBegin Beginning of the month date
monthEnd End of the month date
panel_sgl Panel sg-LASSO regression model
plot_weights MIDAS weights plot function
predict.panel_sgl Computes prediction for the sg-LASSO panel regression model
predict.reg_sgl Computes prediction for the sg-LASSO linear regression
qtarget.sort_midasml High-dimensional mixed frequency data sort function
rbeta_w Restricted Beta density polynomial weights
reg_sgl Linear sg-LASSO regression
sgl_fit sg-LASSO regression
transform_dt Time series vector transformation
us_rgdp US real GDP data with several high-frequency predictors