The Gaussian Covariate Method for Variable Selection


[Up] [Top]

Documentation for package ‘gausscov’ version 0.0.4

Help Pages

abcq American Business Cycle
boston Boston data
decode Decodes the number of a subset selected by flmmdch to give the covariates
decomp decompose a given interaction ic into its component parts
dent Dental data
f1st Stepwise selection of covariates
f2st Repeated stepwise selection of covariates
fgeninter generation of interactions
fgentrig generation of sine and cosine functions
fgr1st Calculates an independence graph using stepwise selection
fgr2st Calculates an independence graph using repeated stepwise selection
fmch Calculates all subsets where each included covariate is significant.
fpval Calculates the regression coefficients, the P-values and the standard P-values for the chosen subset ind
frmch Robust selection of covariates based on all subsets
frobreg Robust regression using Huber's psi-function
frobregp Robust regression using Huber's psi-function providing P-values
frst Robust stepwise selection of covariates
fselect Selects the subsets specified by fmch.
fsimords Simulates the number of false positives for given dimensions (n,k) and given order statistics nu
lx.original Leukemia data
ly.original Leukemia data
mel_temp Melbourne minimum temperature
redwine Redwine data
snspt Sunspot data