| NPBayesImputeCat-package | Bayesian Multiple Imputation for Large-Scale Categorical Data with Structural Zeros |
| CreateModel | Create and initialize the Rcpp_Lcm model object |
| GetDataFrame | Convert imputed data to a dataframe, using the same setting from original input data. |
| GetMCZ | Convert disjointed structrual zeros to a dataframe, using the same setting from original structrual zero data. |
| Lcm | RCPP implemenation of the library |
| MCZ | Example dataframe for structrual zeros. |
| NPBayesImputeCat | Bayesian Multiple Imputation for Large-Scale Categorical Data with Structural Zeros |
| Rcpp_Lcm | RCPP implemenation of the library |
| Rcpp_Lcm-class | Class '"Rcpp_Lcm"' |
| ss16pusa_ds_MCZ | Example dataframe for structrual zeros. |
| ss16pusa_mi_MCZ | Example dataframe for structrual zeros. |
| ss16pusa_sample | Example dataframe for input categorical data. |
| ss16pusa_sample_nozeros | Example dataframe for input categorical data. |
| ss16pusa_sample_nozeros_miss | Example dataframe for input categorical data with missing values. |
| ss16pusa_sample_zeros | Example dataframe for input categorical data. |
| ss16pusa_sample_zeros_miss | Example dataframe for input categorical data with missing values. |
| UpdateX | Allow user to update the model with data matrix of same kind. |
| X | Example dataframe for input categorical data with missing values. |