add.adt | Add CITE-seq antibody-derived tags (ADT) |
add.vdj | Add V(D)J recombination data |
adt.rna.merge | Merge RNA and ADT data |
cc | Calculate Cell cycle phase prediction |
cell.cycle | Cell cycle phase prediction |
cell.filter | Filter cells |
cell.gating | Cell gating |
cell.type.pred | Create heatmaps or dot plots for genes in clusters to find thier cell types using ImmGen data. |
change.clust | Change the cluster number or re-name them |
clono.plot | Make 2D and 3D scatter plots for clonotypes. |
clust.avg.exp | Create a data frame of mean expression of genes per cluster |
clust.cond.info | Calculate cluster and conditions frequencies |
clust.ord | Sort and relabel the clusters randomly or based on pseudotime |
clust.rm | Remove the cells that are in a cluster |
clust.stats.plot | Plotting tSNE, PCA, UMAP, Diffmap and other dim reductions |
cluster.plot | Plot nGenes, UMIs and perecent mito |
data.aggregation | Merge multiple data frames and add the condition names to their cell ids |
data.scale | Scale data |
demo.obj | An object of class iCellR for demo |
down.sample | Down sample conditions |
find.dim.genes | Find model genes from PCA data |
findMarkers | Find marker genes for each cluster |
find_neighbors | K Nearest Neighbour Search |
g2m.phase | A dataset of G2 and M phase genes |
gate.to.clust | Assign cluster number to cell ids |
gene.plot | Make scatter, box and bar plots for genes |
gene.stats | Make statistical information for each gene across all the cells (SD, mean, expression, etc.) |
gg.cor | Gene-gene correlation. This function helps to visulaize and calculate gene-gene correlations. |
heatmap.gg.plot | Create heatmaps for genes in clusters or conditions. |
hto.anno | Demultiplexing HTOs |
iba | iCellR Batch Alignment (IBA) |
iclust | iCellR Clustering |
load.h5 | Load h5 data as data.frame |
load10x | Load 10X data as data.frame |
make.gene.model | Make a gene model for clustering |
make.obj | Create an object of class iCellR. |
myImp | Impute data |
norm.adt | Normalize ADT data. This function takes data frame and Normalizes ADT data. |
norm.data | Normalize data |
opt.pcs.plot | Find optimal number of PCs for clustering |
prep.vdj | Prepare VDJ data |
pseudotime | Pseudotime |
pseudotime.knetl | iCellR KNN Network |
pseudotime.tree | Pseudotime Tree |
qc.stats | Calculate the number of UMIs and genes per cell and percentage of mitochondrial genes per cell and cell cycle genes. |
Rphenograph | RphenoGraph clustering |
run.anchor | Run anchor alignment on the main data. |
run.cca | Run CCA on the main data |
run.clustering | Clustering the data |
run.diff.exp | Differential expression (DE) analysis |
run.diffusion.map | Run diffusion map on PCA data (PHATE - Potential of Heat-Diffusion for Affinity-Based Transition Embedding) |
run.impute | Impute the main data |
run.knetl | iCellR KNN Network |
run.mnn | Run MNN alignment on the main data. |
run.pc.tsne | Run tSNE on PCA Data. Barnes-Hut implementation of t-Distributed Stochastic Neighbor Embedding |
run.pca | Run PCA on the main data |
run.phenograph | Clustering the data |
run.tsne | Run tSNE on the Main Data. Barnes-Hut implementation of t-Distributed Stochastic Neighbor Embedding |
run.umap | Run UMAP on PCA Data (Computes a manifold approximation and projection) |
s.phase | A dataset of S phase genes |
stats.plot | Plot nGenes, UMIs and percent mito |
top.markers | Choose top marker genes |
vdj.stats | VDJ stats |
volcano.ma.plot | Create MA and Volcano plots. |