BASH(1) BASH(1)

NAME
bash — GNU Bourne-Again SHell

SYNOPSIS
bash[options] [command_string | file]

COPYRIGHT
Bash is Copyright © 1989-2013 by the Free Software Foundation, Inc.

DESCRIPTION
Bashis ansh-compatible command language interpreter tixat@es commands read from the standard
input or from a file.Bashalso incorporates useful features from ltwen andC shells ksh andcsh).

Bashis intended to be a conformant implementation of the Shell and Utilities portion of the IEEE POSIX
specification (IEEE Standard 1003.Bashcan be configured to be POSIX-conformant by default.

OPTIONS
All of the single-character shell options documented in the description sétheiltin command can be
used as options when the shell igoked. In addition, bash interprets the following options when it is

invoked:

-C If the —c option is present, then commands are read from the first non-opgiememtcom-
mand_string If there are arguments after tbemmand_stringthey are assigned to the posi-
tional parameters, starting wiio.

=i If the —i option is present, the shellirgeractive

- Makebashact as if it had beenvoked as a bgin shell (se&@NVOCATION below).

-r If the —r option is present, the shell becomestricted (SeeRESTRICTED SHELL below).

-s If the —s option is present, or if no arguments remain after option processing, then commands

are read from the standard inputhis option allows the positional parameters to be set when
invoking an interactie sell.

-D A list of all double-quoted strings precededdoig printed on the standard outpUthese are
the strings that are subject to language translation when the current local€ isrrRDSIX.
This implies the-n option; no commands will bexecuted.

[-+]O [shopt_optioh
shopt_options one of the shell options accepted by shept builtin (see SHELL BUILTIN
COMMANDS belaw). If shopt_optionis present;-O sets the value of that optioh© unsets
it. If shopt_optioris not supplied, the names aralues of the shell options acceptedsbyppt
are printed on the standard output. If theooation option istO, the output is displayed in a
format that may be reused as input.

- A —- signals the end of options and disables further option proces&mgarguments after
the—- are treated as filenames anduanents. Arargument of- is equvaent to—-.

Bashalso interprets a number of multi-character optiohisese options must appear on the command line
before the single-character options to be recognized.

——debugger
Arrange for the debugger profile to beeeuted before the shell start$urns on extended deb-
ging mode (see the description of thédebugoption to theshopt builtin below).
——dump-po-strings
Equivaent to-D, but the output is in the GNgetextpo (portable object) file format.
——dump-strings
Equivaent to-D.
——help Display a usage message on standard output and exit successfully.
——init-file file
——rcfile file
Execute commands fronfile instead of the standard personal initialization Tilbashrcif the
shell is interactie (SeeINVOCATION below).

GNU Bash 4.3 2014 February 2 1

BASH(1) BASH(1)

——login
Equivalent to-I.

——noediting
Do not use the GNleadline library to read command lines when the shell is interacti

——noprofile
Do not read either the system-wide startup f@te/profile or ary of the personal initialization files
"I.bash_profile™/.bash_login or “/.profile. By default,bashreads these files when it is/oked as
a login shell (seéNVOCATION below).

——norc Do not read andxecute the personal initialization filé.bashrcif the shell is interactie. This
option is on by default if the shell isvivked as sh.

——posix
Change the behavior dfash where the default operation differs from the POSIX standard to
match the standargh@six mode SeeSEE ALSO below for a reference to a document that details
how posix mode affects bashbehavior.

——restricted
The shell becomes restricted (f#STRICTED SHELL below).

——verbose
Equivaent to —v.

—=version
Show version information for this instance lbshon the standard output and exit successfully.

ARGUMENTS
If arguments remain after option processing, and neitheraher the—s option has been supplied, the first
argument is assumed to be the name of a file containing shell comniibdshis invoked in this fashion,
$0 is set to the name of the file, and the positional parameters are set to the remginiments. Bash
reads and»acutes commands from this file, thexite. Bashs exit status is thexat status of the last com-
mand &ecuted in the script. If no commands axeaited, the it status is 0. An attempt is first made to
open the file in the current directpand, if no file is found, then the shell searches the directorieaTiH
for the script.

INVOCATION
A login shellis one whose first character of argument zero-isae one started with the—login option.

An interactiveshell is one started without non-optiog@ments and without thec option whose standard
input and error are both connected to terminals (as determineshtiy3)), or one started with thei
option. PS1lis set ands- includesi if bashis interactve, dlowing a shell script or a startup file to test this
state.

The following paragraphs describeshbashexecutes its startup files. If grof the files exist but cannot be
read,bashreports an errorTildes are expanded in filenames as describedvagiderTilde Expansionin
the EXPANSION section.

Whenbashis invoked as anmteractve login shell, or as a non-interaati dell with the——login option, it
first reads andxecutes commands from the filetc/profile if that file eists. Afterreading that file, it
looks for™/.bash_profile™/.bash_loginand~/.profile, in that orderand reads andxecutes commands from
the first one that exists and is readabl&e ——noprofile option may be used when the shell is started to
inhibit this behavior.

When a login shell exithashreads and»ecutes commands from the filebash_logoutif it exists.

When an interacte dhell that is not a login shell is startdolsh reads and »ecutes commands from
“I.bashrg if that file ists. Thismay be inhibited by using the-norc option. The--rcfile file option will
forcebashto read and»ecute commands frorffile instead of/.bashrc

When bash is started non-interaegly, to run a shell script, for>xample, it looks for the ariable
BASH_ENV in the environment, expands its value if it appears there, and usegptreled value as the

GNU Bash 4.3 2014 February 2 2

BASH(1) BASH(1)

name of a file to read andeeute. Bashbehaes as if he following command werexecuted:
if [-n "$BASH_ENV" |; then . "$BASH_ENV"; fi
but the value of théATH variable is not used to search for the filename.

If bashis invoked with the namesh, it tries to mimic the startup behavior of historical versionstoés
closely as possible, while conforming to the POSIX standard as well. Wrakedras anmteractve login
shell, or a non-interac shell with the—-login option, it first attempts to read angeeute commands
from /etc/profileand™/.profile, in that order The ——noprofile option may be used to inhibit this befa.
When irvoked as anmteractve sell with the namesh, bashlooks for the ariableENV, expands its alue
if it is defined, and uses the expanded value as the name of a file to readcatel eSincea shell invoked
assh does not attempt to read andeeute commands from grother startup files, the—-rcfile option has
no efect. Anon-interactre hell invoked with the namesh does not attempt to readyaother startup files.
When irvoked as sh, bashentersposixmode after the startup files are read.

Whenbashis started inposixmode, as with the—posix command line option, it follows the POSIX stan-
dard for startup files. In this mode, interaetehells expand theNV variable and commands are read and
executed from the file whose name is the expanddaey Noother startup files are read.

Bashattempts to determine when it is being run with its standard input connected t@m®tmnection,
as when gecuted by the remote shell daemon, usuihg, or the secure shell daemeshd If bashdeter-
mines it is being run in this fashion, it reads axetetes commands froffi.bashrg if that file exists and is
readable. Iwill not do this if invoked as sh. The——norc option may be used to inhibit this befa, and
the ——rcfile option may be used to force another file to be read, but nestigenor sshdgenerally iwoke
the shell with those options or alldhem to be specified.

If the shell is started with thefettive wser (group) id not equal to the real user (group) id, and-phe
option is not supplied, no startup files are read, shell functions are not inherited fromirtensent, the
SHELLOPTS, BASHOPTS, CDPATH, and GLOBIGNORE variables, if thg appear in the environment, are
ignored, and the ffctive wser id is set to the real user id. If thp option is supplied at rocation, the
startup behavior is the same, but the eflectser id is not reset.

DEFINITIONS
The following definitions are used throughout the rest of this document.
blank A space or tab.
word A sequence of characters considered as a single unit by the shell. Also knotohkes a
name A word consisting only of alphanumeric characters and underscores, gindibg with an alpha-
betic character or an underscore. Also referred to adeatifier.
metacharacter
A character that, when unquoted, separatsisy Oneof the following:
| & ; () < > space tab
control operator
A tokenthat performs a control function. It is one of the following symbols:
| & & ; ;; () | |& <newline>

RESERVED WORDS
Reserved wals are words that h& a pecial meaning to the shell. The following words are recognized as
resened when unquoted and either the first word of a simple commang8Hg&teé GRAMMAR below) or
the third word of aaseor for command:

I case coproc do done elif else esac fi for function if in select then
until while { } time [[]]

SHELL GRAMMAR
Simple Commands
A simple comman@ a sequence of optionadnable assignments followed bjank-separated words and
redirections, and terminated bycantol opeiator. The first word specifies the command to kecated,
and is passed as argument zero. The remaining words are passed as argument®kediverimmand.

The return value of simple commant its exit status, or 128if the command is terminated by sigmal

GNU Bash 4.3 2014 February 2 3

BASH(1) BASH(1)

Pipelines
A pipelineis a sequence of one or more commands separated by one of the control oper#farsThe
format for a pipeline is:

[time [-p]] [!] command [|]&] command?2..]

The standard output @bmmands connected via a pipe to the standard inpuoofimand2 This connec-
tion is performed before gredirections specified by the command (RE&®IRECTION below). If |& is
used,commant standard errqrin addition to its standard output, is connecteccoonmand? standard
input through the pipe; it is shorthand #¥&1 |. This implicit redirection of the standard error to the stan-
dard output is performed afteryaredirections specified by the command.

The return status of a pipeline is the exit status of the last command, unlpgseth# option is enabled.

If pipefail is enabled, the pipelireteturn status is the value of the last (rightmost) command to exit with a
non-zero status, or zero if all commanag successfully If the reserved ard! precedes a pipeline, the
exit status of that pipeline is the logicalgagon of the exit status as described \aboThe shell waits for

all commands in the pipeline to terminate before returning a value.

If the time resened word precedes a pipeline, the elapsed as well as user and system time consumed by its
execution are reported when the pipeline terminafse —p option changes the output format to that spec-

ified by POSIX. When the shell is iposix modgit does not recognizéme as a reserved word if thexie

token begins with a ‘. The TIMEFORMAT variable may be set to a format string that specifias the

timing information should be displayed; see the descriptioMIMEFORMAT under Shell Variables

below.

When the shell is iposix modgetime may be followed by a mdine. In this case, the shell displays the
total user and system time consumed by the shell and its chil@irenTIMEFORMAT variable may be
used to specify the format of the time information.

Each command in a pipeline iseeuted as a separate process (i.e., in a subshell).

Lists
A list is a sequence of one or more pipelines separated by one of the opeai&& , or ||, and option-
ally terminated by one of &, or <newline>.

Of these list operator&& and|| have equal precedence, followed hyand &, which hare equal prece-
dence.

A sequence of one or more newlines may appeatfigt imstead of a semicolon to delimit commands.

If a command is terminated by the control operétpthe shell gecutes the command in tis@ackgroundn

a abshell. Theshell does not wait for the command to finish, and the return statuCisrOmands sepa-
rated by g are eecuted sequentially; the shell waits for each command to terminate in turn. The return
status is the exit status of the last commadged.

AND and OR lists are sequences of one of more pipelines separated&¥ thad|| control operators,
respectiely. AND and OR lists arexecuted with left associativityAn AND list has the form

command®& command2
command2s executed if, and only ifcommandZXeturns an exit status of zero.
An OR list has the form
commandl| command?2
commandds executed if and only itommandleturns a non-zero exit statu§he return status of AND
and OR lists is the exit status of the last commaeduged in the list.

Compound Commands
A compound commanid one of the follving. In most cases &st in a command description may be
separated from the rest of the command by one or mavénes, and may be followed by a newline in
place of a semicolon.

GNU Bash 4.3 2014 February 2 4

BASH(1)

(list)

{ list; }

BASH(1)

list is executed in a subshell environment (S8@MMAND EXECUTION ENVIR ONMENT below).
Variable assignments and builtin commands that affect the skelironment do not remain in
effect after the command completes. The return status is the exit sthstis of

list is simply executed in the current shell \dronment. list must be terminated with a newline or
semicolon. Thids known as group command The return status is theiestatus oflist. Note
that unlile the metacharactefsand), { and} arereserved wadsand must occur where a resev
word is permitted to be recognized. Sinceytde not cause a word break, theust be separated
from list by whitespace or another shell metacharacter.

((expression)

Theexpressionis evaluated according to the rules described waloderARITHMETIC EV ALUA-
TION. If the value of the expression is non-zero, the return status is O; otherwise the return status
is 1. This is exactly equélent tolet " expression .

[[expression]]

GNU Bash 4.3

Return a status of 0 or 1 depending on thauation of the conditional>x@ressionexpression
Expressions are composed of the primaries describedv heider CONDITION AL EXPRES-
SIONS. Word splitting and pathname expansion are not performed on the words betwglen the
and]]; tilde expansion, parameter and variabtpansion, arithmetic expansion, command substi-
tution, process substitution, and quote reshare performed. Conditional operators such-&s
must be unquoted to be recognized as primaries.

When used witl[, the< and> operators sort lexicographically using the current locale.

When the== and!= operators are used, the string to the right of the operator is considered a pat-
tern and matched according to the rules describedvh@iderPattern Matching, as if the ext-

glob shell option were enabledl'he = operator is equélent to==. If the shell optiomocase-

match is enabled, the match is performed withowgfard to the case of alphabetic charactérbe

return value is O if the string matches=] or does not match!€) the pattern, and 1 otherwise.

Any part of the pattern may be quoted to force the quoted portion to be matched as a string.

An additional binary operatpt™, is available, with the same precedence=asand!=. When it is

used, the string to the right of the operator is considered an extended regular expression and
matched accordingly (as fregex(3)). Thereturn value is O if the string matches the pattern, and 1
otherwise. Ifthe regular pression is syntactically incorrect, the conditiongdressiorns return

value is 2. If the shell optiomnocasematchis enabled, the match is performed withowjard to

the case of alphabetic charactefsy part of the pattern may be quoted to force the quoted por
tion to be matched as a strinBracket expressions in regular expressions must be treated care-
fully, snce normal quoting characters lose their meanings betweenetsadik the pattern is
stored in a shell variable, quoting the variablpamsion forces the entire pattern to be matched as
a dring. Substringgnatched by parenthesized sypeessions within the regular expression are
saved in the array ariableBASH_REMATCH. The element o0BASH_REMATCH with index O is

the portion of the string matching the entire regulqression. Thelement oBASH_REMATCH

with indexn is the portion of the string matching thiga parenthesized subexpression.

Expressions may be combined using the failhg operators, listed in decreasing order of prece-
dence:

(expression)
Returns the alue ofexpression This may be used toverride the normal precedence of
operators.
I expression
True if expressionis false.
expression1&& expression2
True if bothexpressionlandexpressionZare true.
expressionl|| expression2
True if eitherexpressionlor expressionds true.

2014 February 2 5

BASH(1)

BASH(1)

The && and|| operators do notvaluate expression2if the value ofexpressionlis sufficient to
determine the return value of the entire conditional expression.

for name[[in [word ...]];] dolist ; done

The list of words follaving in is expanded, generating a list of items. Thdablenameis set to
each element of this list in turn, alist is executed each time. If thm word is omitted, thefor
command gecuteslist once for each positional parameter that is set FA&AMETERS below).
The return status is the exit status of the last commandxéaites. Ifthe expansion of the items
following in results in an empty list, no commands afecated, and the return status is O.

for ((exprl; expr2; expr3)) ; dolist ; done

First, the arithmetic>gressionexprl is evaluated according to the rules described welmder
ARITHMETIC EV ALUATION. The arithmetic pressionexpr2 is then gauated repeatedly until
it evaluates to zero. Each timepr2 evduates to a non-zeraalue,list is executed and the arith-
metic expressiorexpr3 is evaluated. Ifary expression is omitted, it betes as if it evaluates to 1.
The return value is the exit status of the last commatfistithat is &ecuted, or false if anof the
expressions is walid.

selectname| in word] ; do list ; done

The list of words follaving in is expanded, generating a list of itenihe set of expandedasds

is printed on the standard erreach preceded by a numbdf thein word is omitted, the posi-
tional parameters are printed ($#RAMETERS belov). ThePS3prompt is then displayed and a
line read from the standard inpuf.the line consists of a number corresponding to one of the dis-
played words, then the value nAmeis set to that wrd. If the line is emptythe words and
prompt are displayed am. If EOF is read, the command completésly other value read causes
nameto be set to null. The line read isved in the \ariableREPLY. Thelist is executed after
each selection until break command isxecuted. Theext status ofselectis the exit status of the
last command>ecuted inlist, or zero if no commands wereesuted.

casewordin [[(] pattern[| pattern] ...)list ;;] ... esac

A casecommand first xgpandsword, and tries to match it against eaphtternin turn, using the

same matching rules as for pathnampagsion (se®athname Expansionbelon). Theword is
expanded using tilde expansion, parameter and variable expansion, arithmetic substitution, com-
mand substitution, process substitution and quote vamd&ach pattern examined is gpanded

using tilde expansion, parameter and variable expansion, arithmetic substitution, command substi-
tution, and process substitution. If the shell optmtasematchis enabled, the match is per
formed without rgard to the case of alphabetic charactef¢hen a match is found, the corre-
spondinglist is executed. Ifthe;; operator is used, no subsequent matches are attempted after the
first pattern matchUsing ;& in place of;; causesecution to continue with thést associated

with the next set of patterndlsing;;& in place of;; causes the shell to test the next pattern list in

the statement, if ghand execute aly associatedist on a successful match. The exit status is zero

if no pattern matches. Otherwise, it is the exit status of the last commxamdesl inlist.

if list; then list; [elif list; then list;] ... [elselist;] fi

Theif list is executed. [fits exit status is zero, ttiben list is executed. Otherwisegachelif list

is executed in turn, and if its exit status is zero, the corresporttiieig list is executed and the
command completegOtherwise, thelselist is executed, if present. The exit status is the exit sta-
tus of the last commandexuted, or zero if no condition tested true.

while list-1; do list-2; done
until list-1; do list-2; done

GNU Bash 4.3

The while command continuouslyxecutes the listist-2 as long as the last command in the list
list-1 returns an exit status of zer@heuntil command is identical to thehile command, xcept
that the test is mgated,; list-2 is executed as long as the last commandisti1 returns a non-zero
exit status. The exit status of tihile anduntil commands is the exit status of the last command
executed inlist-2, or zero if none was»ecuted.

2014 February 2 6

BASH(1) BASH(1)

Coprocesses
A coprocesdss a shell command preceded by ttoproc resered word. A coprocess isx@cuted asyn-
chronously in a subshell, as if the command had been terminated w&hadbwetrol operatqrwith a two-
way pipe established between theeeuting shell and the coprocess.

The format for a coprocess is:
coproc [NAME] commandredirectiong

This creates a coprocess hamME. If NAME is not supplied, the default nameGOPROC. NAME
must not be supplied fommands asimple commandsee abwe); otherwise, it is interpreted as the first
word of the simple command. When the coprocessxésuted, the shell creates an array variable (see
Arrays belov) namedNAME in the context of thexecuting shell. The standard output @fommandis
connected via a pipe to a file descriptor in tiecating shell, and that file descriptor is assigned to
NAME[O]. The standard input oEommandis connected via a pipe to a file descriptor in tkeceting
shell, and that file descriptor is assigneNf&ME[1]. This pipe is established beforeyaredirections spec-
ified by the command (SeREDIRECTION belov). Thefile descriptors can be utilized as arguments to
shell commands and redirections using standard wqrdnsions. Théle descriptors are nowvailable in
subshells. Therocess ID of the shell spawned teaute the coprocess ivalable as the value of the
variableNAME_PID. Thewait builtin command may be used to wait for the coprocess to terminate.

Since the coprocess is created as an asynchronous commasaprtitiecommand aliays returns success.
The return status of a coprocess is the exit statosmimand

Shell Function Definitions
A shell function is an object that is calleddik smple command andxecutes a compound command with
a rew st of positional parameters. Shell functions are declared as follows:

name() compound—commanidedirection

function name|[()] compound—-commanidedirection]
This defines a function nhamedme The reserved wrd function is optional. If the function
resened word is supplied, the parentheses are optiorta.bodyof the function is the compound
commandcompound—-comman¢seeCompound Commandsabore). Thatcommand is usually a
list of commands between { and }, but may by aeammand listed undéZompound Commands
abore. compound-commands executed wheneer nameis specified as the name of a simple
command. Whein posix modenamemay not be the name of one of the POSpécial luiltins.
Any redirections (Se®EDIRECTION below) specified when a function is defined are performed
when the function isxecuted. Theexit status of a function definition is zero unless a syntax error
occurs or a readonly function with the same name alreddise Whenexecuted, the exit status
of a function is the»at status of the last commandeeuted in the body (See FUNCTIONS
below.)

COMMENTS
In a non-interactie dell, or an interacte dell in which theinteractive_commentsoption to theshopt
builtin is enabled (seSHELL BUILTIN COMMANDS belaw), a word beginning with# causes that ard
and all remaining characters on that line to be ignofadinteractive shell without theinteractive_com-
ments option enabled does not allccomments. Thenteractive_commentsoption is on by default in
interactve dells.

QUOTING
Quotingis used to remee the special meaning of certain characters or words to the haditing can be
used to disable special treatment for special characters venpresered words from being recognized as
such, and to prent parameter expansion.

Each of thanetacharacteristed aboe underDEFINITIONS has special meaning to the shell and must be
quoted if it is to represent itself.

When the command historkgansion facilities are being used (3¢8TORY EXPANSION below), the
history expansiocharacterusually!, must be quoted to pvent history expansion.

There are three quoting mechanisms:abeape charactesingle quotes, and double quotes.

GNU Bash 4.3 2014 February 2 7

BASH(1) BASH(1)

A non-quoted backslash) (s the escape learacter. It preseres the literal value of the xtecharacter that
follows, with the &ception of <nwline>. If a\<newline> pair appears, and the backslash is not itself
guoted, tha<newline> is treated as a line continuation (that is, it is nesidrom the input stream and
effectively ignored).

Enclosing characters in single quotes preserves the literal value of each character within thécgilotes.
gle quote may not occur between single quotes) when preceded by a backslash.

Enclosing characters in double quotes pressetlie literal value of all characters within the quotes, with the
exception of$, °, \, and, when history expansion is enabled;The character$ and" retain their special
meaning within double quotes. The backslash retains its special meaning only wheeddiloone of the
following characters$, *, ", \, or <newline>. A double quote may be quoted within double quotes by pre-
ceding it with a backslasHf enabled, history expansion will be performed unlesk appearing in double
guotes is escaped using a backslash. The backslash precedirg tied remeed.

The special parametetsaand @ have pecial meaning when in double quotes (R&RAMETERS below).

Words of the form$'string are treated speciallyThe word expands tstring, with backslash-escaped char
acters replaced as specified by the ANSI C standdadkslash escape sequences, if present, are decoded

as follows:
\a alert (bell)
\b backspace
\e
\E an escape character
\f form feed
\n new line
\r carriage return
\t horizontal tab
\v vertical tab
\\ backslash
\ single quote
\" double quote

\nnn the eight-bit character whose value is the octal vatugone to three digits)
\xHH the eight-bit character whose value is the hexadecimal iu@ne or tvo hex dgits)
\uHHHH
the Unicode (ISO/IEC 10646) character whoséue is the hexadecimabwe HHHH
(one to four he digits)
\UHHHHHHHH
the Unicode (ISO/IEC 10646) character whose value is thadeeimal alue HHHHH-
HHH (one to eight hedigits)
\cx a montrolx character

The expanded result is single-quoted, as if the dollar sign had not been present.

A double-quoted string preceded by a dollar sijistting") will cause the string to be translated according
to the current locale. If the current localedsr POSIX, the dollar sign is ignoredlf the string is trans-
lated and replaced, the replacement is double-quoted.

PARAMETERS
A parameteris an entity that storesalues. Itcan be aname a rumber or one of the special characters
listed belov underSpecial Rarameters A variableis a parameter denoted byname A variable has a
valueand zero or morattributes Attributes are assigned using theclare builtin command (seéeclare
below in SHELL BUILTIN COMMANDS).

A parameter is set if it has been assignedlaer Thenull string is a alid value. Once variable is set, it
may be unset only by using thasetbuiltin command (seSHELL BUILTIN COMMANDS below).

A variablemay be assigned to by a statement of the form

name=[valug

GNU Bash 4.3 2014 February 2 8

BASH(1) BASH(1)

If valueis not gven, the \ariable is assigned the null stringll valuesundego tilde expansion, parameter
and variable expansion, command substitution, arithmetic expansion, and quota (ereEXPANSION
below). If the variable has itmteger attribute set, thewalueis evaluated as an arithmetic expressioere

if the $((...)) expansion is not used (Fedthmetic Expansion below). Word splitting is not performed,
with the exception of$@" as explained belw under Special RFarameters Pathname expansion is not
performed. Assignmerdtatements may also appear aguarents to thalias, declare typeset export,
readonly, and local builtin commands. When iposix modgthese builtins may appear in a command after
one or more instances of tbemmandbuiltin and retain these assignment statement properties.

In the context where an assignment statement is assigning a value to ar&gk wor array index, the +=
operator can be used to append to or add toathables previous \alue. Whent= is applied to aariable

for which theinteger attribute has been setalueis evaluated as an arithmetic expression and added to the
variable’s aurrent value, which is alsova@luated. Whent= is applied to an arrayaviable using compound
assignment (se@rrays belaw), the \ariables value is not unset (as it is when using =), and vaues are
appended to the array diening at one greater than the arsagiaximum inde& (for indexed arays) or
added as additionakl¢—value pairs in an associai aray. When applied to a string-valuedniable,value

is expanded and appended to the variahkdue.

A variable can be assigned thamerefattribute using the-n option to thedeclare or local builtin com-
mands (see the descriptionsdaitlare andlocal below) to create amameref or a ieference to anotheawi-

able. Thisallows variables to be manipulated indirectheneer the nameref variable is referenced or
assigned to, the operation is actually performed on the variable specified by the namablfswalue. A
nameref is commonly used within shell functions to refer tar&éble whose name is passed as guo-ar
ment to the functionFor instance, if a ariable name is passed to a shell function as its first argument, run-
ning

declare -n ref=$1

inside the function creates a namerafiableref whose value is theaviable name passed as the firguar

ment. Referenceand assignments tef are treated as references and assignments to the variable whose
name was passed &% If the control variable in for loop has the nameref attte, the list of words can

be a list of shell variables, and a name reference will be established for @alcim whe list, in turn, when

the loop is gecuted. Arrayvariables cannot be ggn the —n attribute. Havever, nameref variables can ref-
erence array variables and subscripted aremigbles. Namerefesan be unset using then option to the
unsetbuiltin. Otherwise,if unsetis executed with the name of a namerefiable as an argument, thariv

able referenced by the nameref variable will be unset.

Positional Parameters
A positional paemeteris a parameter denoted by one or more digits, other than the single drRpsiB.
tional parameters are assigned from the shatjuments when it is wroked, and may be reassigned using
the set builtin command. Positional parameters may not be assigned to with assignment statefrients.
positional parameters are temporarily replaced when a shell functipeciged (seeUNCTIONS below).

When a positional parameter consisting of more than a single digipaaed, it must be enclosed in
braces (seEXPANSION below).

Special Parameters

The shell treats seral parameters speciallyThese parameters may only be referenced; assignment to

them is not allowed.

* Expands to the positional parameters, starting from @igen the expansion is not within double
guotes, each positional parametepands to a separateowd. Incontets where it is performed,
those words are subject to furtheond splitting and pathnamegansion. Wherhe epansion
occurs within double quotes, ikgands to a single word with the value of each parameter sepa-
rated by the first character of th&s special ariable. Thais, "$*" is equivalent to '$1c$2c...",
wherec is the first character of the value of ti¥sS variable. If IFS is unset, the parameters are
separated by spaces.IA§ is null, the parameters are joined without intervening separators.

@ Expands to the positional parameters, starting from dleen the expansion occurs within dou-
ble quotes, each parameter expands to a sepavede Whatis, "$@" is equivalent to '$1" "$2" ...

GNU Bash 4.3 2014 February 2 9

BASH(1) BASH(1)

If the double-quoted expansion occurs withinady the expansion of the first parameter is joined

with the beginning part of the original word, and tkpansion of the last parameter is joined with

the last part of the originalavd. Whenthere are no positional paramete&@” and $@ expand

to nothing (i.e., theare remaed).

Expands to the number of positional parameters in decimal.

Expands to the exit status of the most recentégeted foreground pipeline.

- Expands to the current option flags as specified upmtation, by theset builtin command, or
those set by the shell itself (such as-theption).

$ Expands to the process ID of the shell. In a () subshell, it expands to the process ID of the current
shell, not the subshell.

! Expands to the process ID of the job most recently placed into the background, wkethiesde
as an asynchronous command or usindgthbkuiltin (seeJOB CONTROL below).

0 Expands to the name of the shell or shell scriftis is set at shell initializationlf bash is

invoked with a file of commands$0 is set to the name of that filéf bashis started with the-c

option, ther$0 is set to the first argument after the string toXeew@ed, if one is presenOther-

wise, it is set to the filename used teake bash as gven by agument zero.

At shell startup, set to the absolute pathname useddkerhe shell or shell script beingecuted

as passed in the environment or argument stbsequentjyexpands to the last argument to the

previous command, afterxpansion. Alscset to the full pathname used teake each command

executed and placed in the environment exported to that command. When checking mail, this

parameter holds the name of the mail file currently being checked.

Shell Variables
The following variables are set by the shell:

~ H

BASH Expands to the full flename used twake tis instance obash

BASHOPTS
A colon-separated list of enabled shell options. Each word in the list is a valid argumentf®er the
option to theshopt builtin command (see&SHELL BUILTIN COMMANDS belaw). The options
appearing irBASHOPTS are those reported a® by shopt If this variable is in the @ronment
whenbash starts up, each shell option in the list will be enabled before readingaatup files.
This variable is read-only.

BASHPID
Expands to the process ID of the curdeashprocess. Thisgliffers from$$ under certain circum-
stances, such as subshells that do not reqaskto be re-initialized.

BASH_ALIASES
An associatie aray variable whose members correspond to the internal list of aliases as main-
tained by thaliasbuiltin. Elementsadded to this array appear in the alias list; unsetting array ele-
ments cause aliases to be remtbfrom the alias list.

BASH_ARGC
An array variable whose values are the number of parameters in each frame of thebasfrent
execution call stack. The number of parameters to the current subroutine (shell function or script
executed with. or source is at the top of the stack. When a subroutinexiecated, the number of
parameters passed is pushed oBASH_ARGC. The shell setBASH_ARGC only when in
extended debugging mode (see the description ofttaebugoption to theshopt builtin below)

BASH_ARGV
An array variable containing all of the parameters in the cubrasih execution call stack.The
final parameter of the last subroutine call is at the top of the stack; the first parameter of the initial
call is at the bottom. When a subroutine x®oeited, the parameters supplied are pushed onto
BASH_ARGV. The shell set8ASH_ARGV only when in extended debugging mode (see the
description of thextdebugoption to theshopt builtin below)

BASH_CMDS
An associatie aray variable whose members correspond to the internal hash table of commands
as maintained by theashbuiltin. Elementsadded to this array appear in the hash table; unsetting
array elements cause commands to be vethivom the hash table.

GNU Bash 4.3 2014 February 2 10

BASH(1)

BASH(1)

BASH_COMMAND

The command currently beingesuted or about to bexecuted, unless the shell igeeuting a
command as the result of a trap, in which case it is the commerutiag at the time of the trap.

BASH_EXECUTION_STRING

The command argument to the invocation option.

BASH_LINENO

An array \ariable whose members are the line numbers in source files where each corresponding
member ofFUNCNAME was invoked. ${BASH_LINENOJ $i]} is the line number in the source

file (${BASH_SOURCE[$i+1]}) where ${FUNCNAME[$i]} was «alled (or
${BASH_LINENO] $i-1]} if referenced within another shell functior))seLINENO to obtain the

current line number.

BASH_REMATCH

An array variable whose members are assigned by thimary operator to thg conditional com-
mand. Theelement with inde 0 is the portion of the string matching the entire reguigression.
The element with inden is the portion of the string matching thtéh parenthesized sukgres-
sion. Thisvariable is read-only.

BASH_SOURCE

An array variable whose members are the source filenames where the corresponding shell function
names in th&UNCNAME array variable are defined. The shell functB{FUNCNAME] $i]} is
defined in the fil&&{BASH_SOURCE[$i]} and called fron${BASH_SOURCE[$i+1]}.

BASH_SUBSHELL

Incremented by one within each subshell or subshell environment when the ghmslldoecuting
in that ewironment. Thenitial value is 0.

BASH_VERSINFO

A readonly array ariable whose members hold version information for this instanicashf The
values assigned to the array members are as follows:

BASH_VERSINFOIOQ] The major version number (theleass.
BASH_VERSINFO[1] The minor version number (tiversior).
BASH_VERSINFO[2] The patch leel.

BASH_VERSINFOI3] The build version.
BASH_VERSINFOI[4] The release status (e.getal.
BASH_VERSINFOI[5] The value oMACHTYPE .

BASH_VERSION

Expands to a string describing the version of this instanbasbt

COMP_CWORD

An index into ${COMP_WORDS} of the word containing the current cursor positidinis vari-
able is @ailable only in shell functions iroked by the programmable completion facilities (see
Programmable Completionbelow).

COMP_KEY

The ley (or final key d a key quence) used tovioke the current completion function.

COMP_LINE

The current command lineThis variable is zailable only in shell functions and external com-
mands inoked by the programmable completion facilities (sPeogrammable Completion
below).

COMP_POINT

The index of the current cursor position rebai b the beginning of the current commanid the
current cursor position is at the end of the current commandathe of this variable is equal to
${#COMP_LINE}. This variable is wilable only in shell functions and external commands
invoked by the programmable completion facilities ($&@grammable Completionbelow).

COMP_TYPE

GNU Bash 4.3

Set to an integeralue corresponding to the type of completion attempted that caused a completion
function to be calledTAB, for normal completion?, for listing completions after successiabs,

I, for listing alternaties on mrtial word completion@, to list completions if the wrd is not
unmodified, or%, for menu completion. This variable isadable only in shell functions and

2014 February 2 11

BASH(1) BASH(1)

external commands woked by the programmable completion facilities (sBeogrammable
Completion below).

COMP_WORDBREAKS
The set of characters that treadline library treats as word separators when performiogdw
completion. IfCOMP_WORDBREAKS is unset, it loses its special propertiegneif it is subse-
guently reset.

COMP_WORDS
An array variable (seArrays below) consisting of the individual words in the current command
line. Theline is split into words aseadline would split it, usingCOMP_WORDBREAKS as
described abee. This variable is @ilable only in shell functions iroked by the programmable
completion facilities (seBrogrammable Completionbelow).

COPROC
An array variable (se&rrays belaw) created to hold the file descriptors for output from and input
to an unnamed coprocess (§&processesbove).

DIRSTACK
An array variable (seérrays belov) containing the current contents of the directory stack.
Directories appear in the stack in the ordey tae displayed by théirs builtin. Assigningto
members of this arrayaviable may be used to modify directories already in the stack, but the
pushd andpopd builtins must be used to add and remalrectories. Assignmertb this \ariable
will not change the current directoryf DIRSTACK is unset, it loses its special propertiegneif
it is subsequently reset.

EUID Expands to the &ctive wiser ID of the current useinitialized at shell startup. This variable is
readonly.

FUNCNAME
An array \ariable containing the names of all shell functions currently inxbeugon call stack.
The element with inde0 is the name of ancurrently-executing shell function. The bottom-most
element (the one with the highest index)nsin" . This variable exists only when a shell func-
tion is executing. Assignmentsd FUNCNAME have ro efect and return an error statu§.FUNC-
NAME is unset, it loses its special propertiagngf it is subsequently reset.

This variable can be used wiBASH_LINENO andBASH_SOURCE Each element ofFUNC-
NAME has corresponding elementsBASH_LINENO and BASH_SOURCEto describe the
call stack. For instance${FUNCNAME] $i]} was called from the fileb{BASH_SOURCE[$i+1]}
at line numbe${BASH_LINENOJ $i]}. The caller builtin displays the current call stack using
this information.

GROUPS
An array variable containing the list of groups of which the current user is a meAdsgn-
ments toGROUPS have ro efect and return an error statu$.GROUPSIis unset, it loses its spe-
cial properties,een if it is subsequently reset.

HISTCMD
The history numbeior index in the history list, of the current commantdl.HISTCMD is unset, it
loses its special propertieven if it is subsequently reset.

HOSTNAME
Automatically set to the name of the current host.

HOSTTYPE
Automatically set to a string that uniquely describes the type of machine onhelsicis execut-
ing. Thedefault is system-dependent.

LINENO
Each time this parameter is referenced, the shell substitutes a decimal number representing the
current sequential line number (starting with 1) within a script or function. When not in a script or
function, the value substituted is not guaranteed to be meanidfyfuUNENO is unset, it loses its
special propertiesyen if it is subsequently reset.

MACHTYPE
Automatically set to a string that fully describes the system type on Whgthis executing, in
the standard GNlpu-company-systefarmat. Thedefault is system-dependent.

GNU Bash 4.3 2014 February 2 12

BASH(1)

BASH(1)

MAPFILE

An array variable (seArrays below) created to hold thexteread by thamapfile builtin when no
variable name is supplied.

OLDPWD

The previous working directory as set by tduiscommand.

OPTARG

The value of the last option argument processed bygéhepts builtin command (se&SHELL
BUILTIN COMMANDS below).

OPTIND

The index of the next agument to be processed by thetopts builtin command (se&SHELL
BUILTIN COMMANDS below).

OSTYPE

Automatically set to a string that describes the operating system on bdshls executing. The
default is system-dependent.

PIPESTATUS

An array variable (seArrays belown) containing a list of exit status values from the processes in
the most-recentlysecuted foreground pipeline (which may contain only a single command).

PPID The process ID of the shalparent. Thisvariable is readonly.
PWD The current working directory as set by ttitecommand.
RANDOM

Each time this parameter is referenced, a randorgdanteetween 0 and 32767 is generatéde
sequence of random numbers may be initialized by assigning a v&asibOM . If RANDOM is
unset, it loses its special propertiegreif it is subsequently reset.

READLINE_LINE

The contents of theeadline line huffer, for use withbind -x (seeSHELL BUILTIN COM-
MANDS below).

READLINE_POINT

REPLY

The position of the insertion point in theadline line buffer, for use withbind -x (seeSHELL
BUILTIN COMMANDS below).

Set to the line of input read by thead builtin command when no arguments are supplied.

SECONDS

Each time this parameter is referenced, the number of seconds sincevskatian is returned.

If a value is assigned t®ECONDS the value returned upon subsequent references is the number
of seconds since the assignment plus the value assitfn@HCONDSIs unset, it loses its special
properties, een if it is subsequently reset.

SHELLOPTS

SHLVL

uib

A colon-separated list of enabled shell options. Each word in the list is a valid argument for the
—0 option to theset builtin command (se&SHELL BUILTIN COMMANDS below). The options
appearing irSHELLOPTS are those reported as by set —a If this variable is in the edronment
whenbash starts up, each shell option in the list will be enabled before readingaatup files.

This variable is read-only.

Incremented by one each time an instandeashis started.
Expands to the user ID of the current ugdtialized at shell startup. This variable is readonly.

The following \ariables are used by the shell. In some cdszsh) assigns a default value to ariable;
these cases are noted belo

BASH_COMPAT

GNU Bash 4.3

The value is used to set the steelompatibility level. Seethe description of thehopt builtin
belonv underSHELL BUILTIN COMMANDS for a description of the various compatibilityde
els and their éécts. Thevalue may be a decimal number (e.g., 4.2) or argartée.g., 42) corre-
sponding to the desired compatibilitywék If BASH_COMPAT is unset or set to the empty
string, the compatibility Mgl is set to the default for the currenension. IfBASH_COMPAT is

set to a value that is not one of the valid compatibiliglte the shell prints an error message and

2014 February 2 13

BASH(1) BASH(1)

sets the compatibility \el to the default for the currentevsion. Thevalid compatibility levels
correspond to the compatibility options accepted bysttept builtin described bela (for exam-
ple,compat42means that 4.2 and 42 are valalues). Theurrent version is also a valid value.

BASH_ENV
If this parameter is set whdrashis executing a shell script, its value is interpreted as a filename
containing commands to initialize the shell, a¥ibashrc The value oBASH_ENV is subjected
to parameter expansion, command substitution, and arithmetic expansion before being interpreted
as a filenamePATH is not used to search for the resultant filename.

BASH_XTRACEFD
If set to an integer corresponding toaid file descriptarbashwill write the trace output gener
ated whenset -x is enabled to that file descriptoiThe file descriptor is closed when
BASH_XTRACEFD is unset or assigned amealue. Unsettin®dASH_XTRACEFD or assigning it
the empty string causes the trace output to be sent to the standardNaterthat setting
BASH_XTRACEFD to 2 (the standard error file descriptor) and then unsetting it will result in the
standard error being closed.

CDPATH
The search path for thed command. Thids a colon-separated list of directories in which the
shell looks for destination directories specified by tite command. Asample value is
"."lusr!

CHILD_MAX
Set the number of exited child status values for the shell to remeiBash will not allov this
value to be decreased bela POSIX-mandated minimum, and there is a maximwatue (cuf
rently 8192) that this may nokeeed. Theninimum value is system-dependent.

COLUMNS
Used by theselectcompound command to determine the terminal width when printing selection
lists. Automaticallyset if the checkwinsize option is enabled or in an interaai shell upon
receipt of aSIGWINCH .

COMPREPLY
An array variable from whichash reads the possible completions generated by a shell function
invoked by the programmable completion facility (SBeogrammable Completionbelown). Each
array element contains one possible completion.

EMACS
If bashfinds this variable in the environment when the shell starts altev, it assumes that the
shell is running in an Emacs shell buffer and disables line editing.

ENV Similar toBASH_ENV; used when the shell isvioked in POSIX mode.

FCEDIT
The default editor for thi builtin command.

FIGNORE
A colon-separated list of diKes to ignore when performing filename completion Ee&DLINE
belov). A filename whose suffix matches one of the entrig8GNORE is excluded from the list
of matched filenamesA sample value i8.0:™

FUNCNEST
If set to a numeric value greater than O, defines a maximum function nesehg Henction
invocations that exceed this nestingdewill cause the current command to abort.

GLOBIGNORE
A colon-separated list of patterns defining the set of filenames to be ignored by patkpame e
sion. Ifa flename matched by a pathname expansion pattern also matches one of the patterns in
GLOBIGNORE, it is remaved from the list of matches.

HISTCONTROL
A colon-separated list of values controllingshcommands are sad on the history list. If the list
of values includeggnorespacelines which bgin with aspacecharacter are notead in the his-
tory list. A value ofignoredupscauses lines matching the yis history entry to not be\sal.
A value ofignorebothis shorthand forgnorespaceandignoredups A value of erasedupgauses
all previous lines matching the current line to be rgatbfrom the history list before that line is

GNU Bash 4.3 2014 February 2 14

BASH(1) BASH(1)

saved. Any value not in the ab list is ignored.If HISTCONTROL is unset, or does not include
a valid value, all lines read by the shell parser avedsan the history list, subject to the value of
HISTIGNORE . The second and subsequent lines of a multi-line compound command are not
tested, and are added to the histogamess of the value ¢iiISTCONTROL .

HISTFILE
The name of the file in which command history igedgseeHISTORY belov). Thedefault value
is "/.bash_history If unset, the command history is novadwhen a shell exits.

HISTFILESIZE
The maximum number of lines contained in the history filehen this variable is assigned a
value, the history file is truncated, if necessaoycontain no more than that number of lines by
removing the oldest entriesThe history file is also truncated to this size after writing it when a
shell «its. If the value is 0, the history file is truncated to zero size. Non-numeric values and
numeric \alues less than zero inhibit truncation. The shell sets the default value to the value of
HISTSIZE after reading anstartup files.

HISTIGNORE
A colon-separated list of patterns used to decide which command lines showeédershe his-
tory list. Each pattern is anchored at thgibeing of the line and must match the complete line
(no implicit *" is appended). Eacpattern is tested aqst the line after the checks specified by
HISTCONTROL are applied. In addition to the normal shell pattern matching charad&ers, *
matches the previous history liné&' may be escaped using a backslash; the backslash is
removed before attempting a match. The second and subsequent lines of a multi-line compound
command are not tested, and are added to the hisgayless of the value ¢iISTIGNORE .

HISTSIZE
The number of commands to remember in the command histor\H[SEORY belaw). If the
value is 0, commands are notved in the history list. Numeric values less than zero result in
evey command being sad on the history list (there is no limit)The shell sets the defaulalue
to 500 after reading grstartup files.

HISTTIMEFORMAT
If this variable is set and not null, itglue is used as a format string &irftimg3) to print the
time stamp associated with each history entry displayed blishary builtin. If this variable is
set, time stamps are written to the history file sg thay be preserved across shell sessidrss
uses the history comment character to distinguish timestamps from other history lines.

HOME
The home directory of the current user; the default argument fardtheiltin command. The
value of this variable is also used when performing tilde expansion.

HOSTFILE
Contains the name of a file in the same formateds/hoststhat should be read when the shell
needs to complete a hostname. The list of possible hostname completions may be changed while
the shell is running; the retime hostname completion is attempted after the value is changed,
bashadds the contents of thewnéile to the existing listlf HOSTFILE is set, but has no value, or
does not name a readable fihash attempts to readetc/hoststo obtain the list of possible host-
name completions. WhetiOSTFILE is unset, the hostname list is cleared.

IFS The Internal Field Sepaator that is used for word splitting aftekgansion and to split lines into
words with theread builtin command. The default value is “<space><tab><newline>".

IGNOREEOF
Controls the action of an interaati dell on receipt of alEOF character as the sole input.set,
the value is the number of conseeattOF characters which must be typed as the first characters
on an input line beforbashexits. If the variable exists but does nowvaa umeric \alue, or has
no value, the default value is 10. If it does not edst- signifies the end of input to the shell.

INPUTRC
The filename for theeadline startup file, werriding the default of /.inputrc (see READLINE
below).

LANG Used to determine the locale category foy aategory not specifically selected with anable
starting withLC_.

GNU Bash 4.3 2014 February 2 15

BASH(1) BASH(1)

LC_ALL
This variable werrides the alue of LANG and an other LC_ variable specifying a locale cate-
gory.

LC_COLLATE
This variable determines the collation order used when sorting the results of pathpamsian,
and determines the behavior of rang@ressions, equélence classes, and collating sequences
within pathname expansion and pattern matching.

LC_CTYPE
This variable determines the interpretation of characters and the behavior of character classes
within pathname expansion and pattern matching.

LC_MESSAGES
This variable determines the locale used to translate double-quoted strings precefled by a

LC_NUMERIC
This variable determines the locale category used for number formatting.

LINES Used by theselectcompound command to determine the column length for printing selection lists.
Automatically set if thecheckwinsizeoption is enabled or in an interaisell upon receipt of a
SIGWINCH .

MAIL If this parameter is set to a file or directory name andvihieP ATH variable is not setbash
informs the user of the avel of mail in the specified file or Maildir-format directory.

MAILCHECK
Specifies hav often (in secondshashchecks for mail. The default is 60 secontlghen it is time
to check for mail, the shell does so before displaying the primary prdfrtpts variable is unset,
or set to a value that is not a number greater than or equal to zero, the shell disables mail checking.

MAILP ATH
A colon-separated list of filenames to be checked for mail. The message to be printed when mail
arrives in a particular file may be specified by separating the filename from the message with a ‘?".
When used in the text of the messakjeexpands to the name of the current mailfile. Example:
MAILP AT H="/var/mail/bfox?"You hae mail":"/shell-mail?"$_has mail!"

Bashsupplies a default value for this variablef the location of the user mail files that it uses is
system dependent (e.g., /var/nBliISER).

OPTERR
If set to the value Ihashdisplays error messages generated byg#teptsbuiltin command (see
SHELL BUILTIN COMMANDS below). OPTERR is initialized to 1 each time the shell ivaked
or a shell script isxecuted.

PATH The search path for commands.is a colon-separated list of directories in which the shell looks
for commands (Se€OMMAND EXECUTION belaw). A zero-length (null) directory name in the
value of PATH indicates the current directonA null directory name may appear atedjacent
colons, or as an initial or trailing colon. The aelt path is system-dependent, and is set by the
administrator who installs bash A common value is
{usr/local/bin:/usr/local/sbin:/usr/bin:/usr/sbin:/bin:/shin

POSIXLY_CORRECT
If this variable is in the efironment wherbash starts, the shell enteposix modéefore reading
the startup files, as if the-posixinvocation option had been supplied. If it is set while the shell is
running,bashenablegposix modeas if he commandet -0 posix had beenecuted.

PROMPT_COMMAND
If set, the value isx@cuted as a command prior to issuing each primary prompt.

PROMPT_DIRTRIM
If set to a number greater than zero, the value is used as the number of trailing directory compo-
nents to retain when expanding theand\W prompt string escapes (SBROMPTING below).
Characters renved are replaced with an ellipsis.

PS1 The value of this parameter is expanded ER@MPTING belav) and used as the primary prompt
string. Thedefault value is \s—\W\$" .

PS2 The value of this parameter is expanded as Rdthand used as the secondary prompt strifige
default is > " .

GNU Bash 4.3 2014 February 2 16

BASH(1)

BASH(1)

PS3 The walue of this parameter is used as the prompt fois#hectcommand (SeSHELL GRAM-
MAR above).

PS4 The value of this parameter is expanded as Rithand the value is printed before each command
bashdisplays during anxecution trace. The first characterR$4is replicated multiple times, as
necessaryto indicate multiple leels of indirection. The default is+ " .

SHELL
The full pathname to the shell igft in this environmentariable. Ifit is not set when the shell
starts bashassigns to it the full pathname of the current sdedin shell.

TIMEFORMAT
The \alue of this parameter is used as a format string specifywghme timing information for
pipelines prefixed with théme resered word should be displayedlhe % character introduces
an escape sequence thatxpanded to a time value or other information. The escape sequences
and their meanings are as follows; the braces denote optional portions.

%% Aliteral %.

%[plll[R The elapsed time in seconds.

%[pllllU The number of CPU seconds spent in user mode.

%[pllllS The number of CPU seconds spent in system mode.

%P The CPU percentage, computed as (%U + %S) / %R.

The optionalp is a digit specifying th@recision the number of fractional digits after a decimal
point. Avalue of 0 causes no decimal point or fraction to be output. At most three places after the
decimal point may be specified; valuespajreater than 3 are changed tolBp is not specified,
the value 3 is used.

The optional specifies a longer format, including minutes, of the fMMmSSFFs. Thevaue

of p determines whether or not the fraction is included.

If this wvariable is not set, bash acts as if it had the ale
$\nreal\t%3IR\nusent%3lU\nsys\t%3IS'. If the value is null, no timing information is dis-
played. Atrailing newline is added when the format string is displayed.

TMOUT
If set to a value greater than zeT®OUT is treated as the default timeout for flead builtin.

The selectcommand terminates if input does not\aréter TMOUT seconds when input is com-
ing from a terminal. In an interacé dell, the walue is interpreted as the number of seconds to
wait for a line of input after issuing the primary promfash terminates after waiting for that
number of seconds if a complete line of input does notearri

TMPDIR

If set,bashuses its value as the name of a directory in whas$h creates temporary files for the
shell’'s use.

auto_resume

This variable controls e the shell interacts with the user and job conttbthis variable is set,

single word simple commands without redirections are treated as candidates for resumption of an
existing stopped job There is no ambiguity allowed; if there is more than one job beginning with
the string typed, the job most recently accessed is selettelnameof a stopped job, in this
contet, is the command line used to start it. If set to thkieexact, the string supplied must
match the name of a stopped job exactly; if setuostring the string supplied needs to match a
substring of the name of a stopped. jathe substringvalue provides functionality analogous to

the %? job identifier (seeJOB CONTROL below). If set to ag other value, the supplied string

must be a prefix of a stopped jslvame; this preides functionality analogous to tBéstring job
identifier.

histchars

GNU Bash 4.3

The two or three characters which control history expansion and tokenizationH(SEORY
EXPANSION below). Thefirst character is thaistory expansioncharacterthe character which
signals the start of a history expansion, normadlly The second character is thylick substitu-

tion characterwhich is used as shorthand for re-running the previous command entered, substitut-
ing one string for another in the command. The default.isThe optional third character is the

2014 February 2 17

BASH(1) BASH(1)

character which indicates that the remainder of the line is a comment when found as the-first char
acter of a word, normally#'. The history comment character causes history substitution to be
skipped for the remaining words on the linedoes not necessarily cause the shell parser to treat
the rest of the line as a comment.

Arrays
Bash provides one-dimensional inged and associatie aray variables. Amy variable may be used as an
indexed aray; thedeclare builtin will explicitly declare an arrayThere is no maximum limit on the size of
an arraynor ary requirement that members be irde: or assigned contiguouslyindexed arrays are refer
enced using integers (including arithmetipressions) ana@re zero-based; associatiarays are refer
enced using arbitrary strings. Unless otherwise notedxédderay indices must be non-gaive integers.

An indexed aray is created automatically if yanvariable is assigned to using the synteamégsub-
scripl=value The subscriptis treated as an arithmetic expression that mustate to a numberTo
explicitly declare an indeed aray, use declare —a hame(see SHELL BUILTIN COMMANDS below).
declare -a namgsubscrip} is also accepted; tteibscriptis ignored.

Associatve arays are created usimigclare -A name

Attributes may be specified for an arragrigble using theleclare andreadonly builtins. Eachattribute
applies to all members of an array.

Arrays are assigned to using compound assignments of thenfomes(valuel ... valuen), where each
value is of the form fubscripi=string. Indexed array assignments do not require anything &tring.
When assigning to incted arays, if the optional brackets and subscript are supplied, thatimdgssigned
to; otherwise the indeof the element assigned is the last m@ssigned to by the statement plus one.
Indexing starts at zero.

When assigning to an assoociataray, the subscript is required.

This syntax is also accepted by theclare builtin. Individual array elements may be assigned to using the
namésubscripf=value syntax introduced alve. When assigning to an inded aray, if nameis sub-
scripted by a rgetive rumber that number is interpreted as relatio one greater than the maximum ixde

of name so regdive indices count back from the end of the aramygl an ind& of —1 references the last
element.

Any element of an array may be referenced usingat{gsubscripl}. The braces are required toad
conflicts with pathnamexpansion. Ifsubscriptis @ or *, the word expands to all members raime
These subscripts differ only when the word appears within double qubtibe word is double-quoted,
${namé*]} expands to a single word with thealue of each array member separated by the first character
of the IFS special variable, and $itm¢@]} expands each element ameto a separate evd. When
there are no array members,n&né@]} expands to nothing. If the double-quoted expansion occurs
within a word, the expansion of the first parameter is joined with the beginning part of the orwidal w
and the gpansion of the last parameter is joined with the last part of the origavdl W hisis analogous

to the expansion of the special parametezasd @ (seeSpecial Rarametersabove). ${#namésubscrip}}
expands to the length of i@mgsubscrip}}. If subscriptis * or @, the expansion is the number of ele-
ments in the arrayReferencing an arrayaviable without a subscript is egdient to referencing the array
with a subscript of 0. If theubscriptused to reference an element of an xedexrray esaluates to a num-
ber less than zero, it is interpreted as retath one greater than the maximum imdef the arrayso reg
ative indices count back from the end of the areag an ind& of -1 references the last element.

An array variable is considered set if a subscript has been assigale@é.a Whenull string is a valid &lue.

It is possible to obtain thesls (ndices) of an array as well as th@ues. ${namé@]} and ${!namg*]}
expand to the indices assigned in arrayiablename The treatment when in double quotes is similar to
the expansion of the special parame@rand* within double quotes.

Theunsetbuiltin is used to destgoarrays. unsetnamgsubscrip} destroys the array element at indsub-
script Negdive subscripts to indeed arays are interpreted as describedveboCare must be taken to
avad unwanted side effects caused by pathnaxparesion. unsetname wherenameis an arrayor unset
namgsubscrip}, wheresubscriptis * or @, removes the entire array.

GNU Bash 4.3 2014 February 2 18

BASH(1) BASH(1)

The declare local, and readonly builtins each accept aa option to specify an inded aray and a-A
option to specify an associai aray. If both options are suppliedA takes precedencelheread builtin
accepts aa option to assign a list of words read from the standard input to an dinagetanddeclare
builtins display array values in a way that allows them to be reused as assignments.

EXPANSION
Expansion is performed on the command line after it has been split antls.wThereare sgen kinds of
expansion performedrace &pansion tilde expansion parameter and variablexpansion command sub-
stitution, arithmetic expansiorword plitting, and pathname expansion

The order of expansions is: bracgansion; tilde expansion, parameter and variable expansion, arithmetic
expansion, and command substitution (done in a left-to-ragttion); word splitting; and pathnamepan-
sion.

On systems that can support it, there is an additional exparnsitabke: process substitutionThis is per
formed at the same time as tilde, parametaiable, and arithmetic expansion and command substitution.

Only brace expansion, word splitting, and pathnampamesion can change the number of words of the
expansion; other expansions expand a single word to a sirghk Virheonly exceptions to this are the
expansions of $@" and "${nam¢@]}" as eplained abve (SeePARAMETERS).

Brace Expansion
Brace &pansionis a mechanism by which arbitrary strings may be generated. This mechanism is similar
to pathname xpansion but the filenames generated need miste Patterns to be brace expandedet#ite
form of an optionapreamble followed by either a series of comma-separated strings or a sequpres e
sion between a pair of braces, followed by an optipoatscript The preamble is prefixed to each string
contained within the braces, and the postscript is then appended to each resulting string, expanding left to
right.

Brace expansions may be nested. The results of each expanded string are not sorted; left to right order is
presered. For example, fd,c,l3e expands into ‘ade ace abe’.

A sequence expression takes the fdsmy[..incr]}, wherex andy are either integers or single characters,
andincr, an gtional increment, is an irger. When integers are supplied, the expressigrards to each
number betweer andy, inclusive. Supplied integers may be prefixed willo force each term to ha the

same width. When eitheror y begins with a zero, the shell attempts to force all generated terms to contain
the same number of digits, zero-padding where neces®dngn characters are supplied, thgpression
expands to each character lexicographically betweandy, inclusive, using the default C localeNote

that bothx andy must be of the same typ&Vhen the increment is supplied, it is used as therdifice
between each term. The default incrementis 1 or -1 as appropriate.

Brace expansion is performed before ather expansions, andyacharacters special to othexpansions
are preserved in the result. It is strictlytteal. Bashdoes not apply ansyntactic interpretation to the con-
text of the expansion or the text between the braces.

A correctly-formed bracexpansion must contain unquoted opening and closing braces, and at least one
unquoted comma or aalid sequence xpression. Ag incorrectly formed brace expansion is left
unchanged. A or, may be quoted with a backslash tover# its being considered part of a bragpres-

sion. To avoid conflicts with parametexpansion, the strin§{ is not considered eligible for bracepan-

sion.

This construct is typically used as shorthand when the common prefix of the strings to be generated is
longer than in the alve example:

mkdir /usr/local/src/bash/{old,medist,bugs}
or
chown root /usr/{ucb/{ex,edit},lib/{ex?.?* how_ex}}

Brace expansion introduces a slight incompatibility with historical versiosh. o§h does not treat open-
ing or closing braces specially whenyttappear as part of a word, and preserves them in the olgpsh
removes kraces from words as a consequence of brapansion. Br example, a word entered $b as
file{1,2} appears identically in the output. The same word is outptiteslsfile2after expansion bpash

GNU Bash 4.3 2014 February 2 19

BASH(1) BASH(1)

If strict compatibility withshis desired, stattashwith the+B option or disable bracexpansion with the
+B option to thesetcommand (seSHELL BUILTIN COMMANDS below).

Tilde Expansion
If a word begins with an unquoted tilde charact&,(all of the characters preceding the first unquoted
slash (or all characters, if there is no unquoted slash) are considédedpgefix If none of the characters
in the tilde-prefix are quoted, the characters in the tilde-prefixwisip the tilde are treated as a possible
login name If this login name is the null string, the tilde is replaced with #ieevof the shell parameter
HOME . If HOME is unset, the home directory of the usescaiting the shell is substituted insteadther-
wise, the tilde-prefix is replaced with the home directory associated with the specified login name.

If the tilde-prefix is a “+’, the value of the shelinablePWD replaces the tilde-prefixf the tilde-prefix is
a -, the value of the shellariableOLDPWD, if it is set, is substitutedIf the characters following the
tilde in the tilde-prefix consist of a numbl optionally prefixed by a ‘+’ or a ‘~’, the tilde-prefix is
replaced with the corresponding element from the directory stack, asulitl Wwe displayed by thdirs
builtin invoked with the tilde-prefix as an gmment. Ifthe characters folleing the tilde in the tilde-prefix

consist of a number without a leading ‘+’ or ‘=, ‘+’ is assumed.
If the login name is welid, or the tilde expansion fails, the word is unchanged.

Each variable assignment is checked for unquoted tilde-prefixes immediately followdnghe first=. In
these cases, tilde expansion is also perforn@shsequentlyone may use filenames with tildes in assign-
ments toPATH, MAILP ATH, andCDPATH, and the shell assigns the expanded value.

Parameter Expansion
The ‘$' character introduces parametespansion, command substitution, or arithmetipansion. The
parameter name or symbol to bgpanded may be enclosed in braces, which are optional bettegmo-
tect the variable to be expanded from characters immediatelwiiogat which could be interpreted as part
of the name.

When braces are used, the matching ending brace is thg fingit ‘escaped by a backslash or within a
qguoted string, and not within an embedded arithmetic expansion, command substitution, or parameter
expansion.

${paramete}
The value ofparameteris substituted. The braces are required wparameteris a positional
parameter with more than one digit, or whgarameteris followed by a character which is not to
be interpreted as part of its nam&he parameteris a shell parameter as described vabo
PARAMETERS) or an aray referenceArrays).

If the first character gbarameteris an exclamation point)(it introduces a kel of variable indirection.
Bashuses the value of the variable formed from the repatdmeteras the name of the variable; thariv
able is then expanded and thatue is used in the rest of the substitution, rather than the vapazasfe-
teritself. Thisis known asndirect expansion The ceptions to this are the expansions dip$¢fix} and
${!nam¢@]} described bela. The exclamation point must immediately follahe left brace in order to
introduce indirection.

In each of the cases belowvord is subject to tilde expansion, parameter expansion, command substitution,
and arithmetic expansion.

When not performing substringg@ansion, using the forms documented fe(e.g.,:-), bashtests for a
parameter that is unset or null. Omitting the colon results in a test only for a parameter that is unset.

${parameter-word}
Use Default \alues If parameteris unset or null, the expansion wbrd is substituted.Other-
wise, the value oparameteris substituted.

${parameter=word}
Assign Default \alues If parameteris unset or null, thexpansion ofword is assigned to
parameter The value ofparameteris then substitutedPositional parameters and special param-
eters may not be assigned to in this way.

GNU Bash 4.3 2014 February 2 20

BASH(1) BASH(1)

${parameter?word}
Display Error if Null or Unset. If parameteris null or unset, the expansionwbrd (or a mes-
sage to that effect Wvord is not present) is written to the standard error and the shell, if it is not
interactve, exits. Otherwisethe value oparameteris substituted.

${parameter+word}
Use Alternate \alue. If parameteris null or unset, nothing is substituted, otherwise ttpae-
sion ofword is substituted.

${parameteroffse}

${ parameteroffsetlength
Substring Expansion Expands to up ttengthcharacters of the value prameterstarting at the
character specified bgffset If parameteris @, an ndexed array subscripted by® or *, or an
associatie aray name, the results differ as described wellf lengthis omitted, expands to the
substring of the value gfarameterstarting at the character specifieddffsetand extending to the
end of the alue. lengthand offsetare arithmetic xpressions (Se@RITHMETIC EV ALUATION
below).

If offsetevduates to a number less than zero, the value is used as an offset in characters from the
end of the value gfarameter If lengthevduates to a number less than zero, it is interpreted as an
offset in characters from the end of ttedue ofparameterather than a number of characters, and

the expansion is the characters betwa#setand that resultNote that a ngdtive dfset must be
separated from the colon by at least one spaceotd bBeing confused with the expansion.

If parameteris @, the result idengthpositional parameters gmning atoffset A negative offset

is taken relatie b one greater than the greatest positional paramsziem d set of -1 galuates to
the last positional parametelt is an expansion error ilength evduates to a number less than
zero.

If parameteris an indeed aray name subscripted by @ or *, the result islémgthmembers of
the array beginning with $arametefoffset}. A negaive offsetis taken relatie o one greater
than the maximum indeof the specified arraylt is an expansion error ilength evduates to a
number less than zero.

Substring expansion applied to an asso@adiray produces undefined results.

Substring indexing is zero-based unless the positional parameters are used, in which case the
indexing starts at 1 by dadilt. If offsetis 0, and the positional parameters are u$@ds prefired
to the list.

${! prefix:}

${! prefix@}
Names matching pefix. Expands to the names of variables whose names begiprefik sepa-
rated by the first character of th&s special ariable. Wher@ is used and the expansion appears
within double quotes, each variable name expands to a separate word.

${!nam¢ @]}

${!namg*]}
List of array keys If nameis an array variable, expands to the list of array indicegsjk
assigned imame If nameis not an arrayexpands to O ihameis set and null otherwisé/Vhen
@ is used and the expansion appears within double quotes, ®aelplinds to a separate word.

${#paramete}
Parameter length. The length in characters of the valuepafameteris substituted.If parame-
ter is * or @, the value substituted is the number of positional paramelergarameteris an
array name subscripted Byor @, the value substituted is the number of elements in the. aifray
parameteris an indeed array name subscripted by agagve rumber that number is interpreted
as relatie one greater than the maximum imdef parameter so regdive indices count back

GNU Bash 4.3 2014 February 2 21

BASH(1) BASH(1)

from the end of the arragnd an ind& of —1 references the last element.

${parametettword}

${parametetttword}
Remove matching prefix pattern. The word is expanded to produce a pattern just as in path-
name &pansion. Ifthe pattern matches the beginning of the valygachmeter then the result of
the expansion is the expanded valuepafameterwith the shortest matching pattern (th&"*
case) or the longest matching pattern (th#’'c ase) deletedIf parameteris @ or *, the pattern
removal operation is applied to each positional parameter in turn, and the expansion is the resul-
tant list. If parameteris an array variable subscripted wi@or *, the pattern rema@l operation
is applied to each member of the array in turn, and the expansion is the resultant list.

${parameteto word}

${paramete?% word}
Remove matching suffix pattern. Thewordis expanded to produce a pattern just as in pathname
expansion. lfthe pattern matches a trailing portion of the expanded valparameter then the
result of the expansion is the expanded valupasmeterwith the shortest matching pattern (the
“%" case) or the longest matching pattern (tf&% " case) deletedIf parameteris @ or *, the
pattern remaal operation is applied to each positional parameter in turn, and the expansion is the
resultant list.If parameteris an array variable subscripted wi@or *, the pattern remal oper-
ation is applied to each member of the array in turn, and the expansion is the resultant list.

${ parametefpatternstring}
Pattern substitution. The patternis expanded to produce a pattern just as in pathnaqpane
sion. Parameteris expanded and the longest matchpatttern against its value is replaced with
string. If patternbegins with/, al matches ofpatternare replaced witstring. Normally only the
first match is replacedlf patternbegins with#, it must match at the beginning of thepanded
value of parameter If patternbegins with%, it must match at the end of the expanded value of
parameter If string is null, matches opatternare deleted and theefollowing patternmay be
omitted. If parameteris @ or *, the substitution operation is applied to each positional parameter
in turn, and the expansion is the resultant listparameteris an array variable subscripted with
@ or *, the substitution operation is applied to each member of the array in turn, angbahe e
sion is the resultant list.

${parameteipatterri

${parameteipatterr}

${parameteypatterr}

${parametey,patterr}
Case modification This expansion modifies the case of alphabetic charactgrarameter The
patternis expanded to produce a pattern just as in pathnatpansion. Eaclctharacter in the
expanded value oparameteris tested aginst pattern and, if it matches the pattern, its case is
corverted. Thepattern should not attempt to match more than one charddtef operator con-
verts lowercase letters matchipgtternto uppercase; theoperator coverts matching uppercase
letters to lavercase. Thé™ and,, expansions corert each matched character in thepanded
value; the™ and, expansions match and ogant only the first character in the expandedue. If
patternis omitted, it is treated li&ka?, which matcheswery character If parameteris @ or *,
the case modification operation is applied to each positional parameter in turn, axphtisgon
is the resultant listlf parameteris an array variable subscripted wi@or *, the case modifica-
tion operation is applied to each member of the array in turn, and the expansion is the resultant list.

Command Substitution
Command substitutioallows the output of a command to replace the command ndinere are tw
forms:

$(command
or
“‘command

Bash performs the expansion byeeuting commandand replacing the command substitution with the

GNU Bash 4.3 2014 February 2 22

BASH(1) BASH(1)

standard output of the command, witty drailing newlines deletedEmbedded newlines are not deleted,
but they may be remwed during word splitting. The command substituticat file) can be replaced by
the equiaent but fastefs(< file).

When the old-style backquote form of substitution is used, backslash retains its literal meaajptg e
when followed byg, °, or \. The first backquote not preceded by a backslash terminates the command sub-
stitution. Whenusing the $¢ommang form, all characters between the parenthesesmpkhe com-

mand; none are treated specially.

Command substitutions may be nestdd. nest when using the backquoted form, escape the inner back-
guotes with backslashes.

If the substitution appears within double quotes, word splitting and pathngaesen are not performed
on the results.

Arithmetic Expansion
Arithmetic expansion allows thevaluation of an arithmetic expression and the substitution of the result.
The format for arithmetic expansion is:

$((expression)

The expressionis treated as if it were within double quotest & double quote inside the parentheses is not
treated speciallyAll tokens in the expression undergo parameter anidie expansion, command substi-
tution, and quote remval. Theresult is treated as the arithmetipeession to beveluated. Arithmetic
expansions may be nested.

The evaluation is performed according to the rules listed Wwelmder ARITHMETIC EV ALUATION. If
expressionis invalid, bashprints a message indicating failure and no substitution occurs.

Process Substitution
Process substitutiois supported on systems that support named ppi€©§) or the /dev/fd method of
naming open fileslt takes the form of(list) or >(list). The procesfist is run with its input or output con-
nected to &IFO or some file indev/fd. The name of this file is passed as aguarent to the current com-
mand as the result of th@mansion. Ifthe>(list) form is used, writing to the file will provide input fbst.
If the <(list) form is used, the file passed as an argument should be read to obtain the distput of

When aailable, process substitution is performed simultaneously with parameteradable &pansion,
command substitution, and arithmetic expansion.

Word Splitting
The shell scans the results of paramelgraasion, command substitution, and arithmetic expansion that
did not occur within double quotes faord litting.

The shell treats each charactetrd as a delimiterand splits the results of the other expansions iraode/
using these characters as field terminattfr$=S is unset, or its value ixactly <space><tab><newline?

the default, then sequences<apace> <tab>, and <newline> at the beginning and end of the results of
the preious expansions are ignored, ang asquence ofFS characters not at the beginning or end egrv

to delimit words. IfIFS has a value other than the aeft, then sequences of the whitespace characters
spaceandtab are ignored at the beginning and end of tleedyas long as the whitespace character is in
the value ofFS (anIFS whitespace characterfny character inFs that is notiFS whitespace, along with

ary adjacentIFS whitespace characters, delimits a field.sequence ofFS whitespace characters is also
treated as a delimitetf the value ofFS is null, no word splitting occurs.

Explicit null arguments'(" or ') are retained. Unquoted implicit null gements, resulting from the
expansion of parameters thatveamp values, are renved. If a parameter with no value is expanded within
double quotes, a null argument results and is retained.

Note that if no expansion occurs, no splitting is performed.

Pathname Expansion
After word splitting, unless thef option has been sdiash scans each word for the character8, and|.
If one of these characters appears, then threl v rggarded as gattern and replaced with an alphabeti-
cally sorted list of filenames matching the pattern fseern Matching below). If no matching filenames

GNU Bash 4.3 2014 February 2 23

BASH(1) BASH(1)

are found, and the shell optionliglob is not enabled, the word is left unchanged. Ifribkglob option is

set, and no matches are found, the word is vetholf thefailglob shell option is set, and no matches are
found, an error message is printed and the command isxemited. Ifthe shell optiomocaseglobis
enabled, the match is performed withogard to the case of alphabetic characters. When a pattern is used
for pathname expansion, the charattér at the start of a name or immediately faling a slash must be
matched eplicitly, unless the shell optiodotglob is set. When matching a pathname, the slash character
must alays be matchedxglicitly. In other cases, thé.” character is not treated speciallgee the
description okshoptbelov underSHELL BUILTIN COMMANDS for a description of theocaseglobnull-

glob, failglob, and dotglob shell options.

The GLOBIGNORE shell \ariable may be used to restrict the set of filenames matchiatiean If GLO-
BIGNORE is set, each matching filename that also matches one of the patteBhOBIGNORE is
removed from the list of matches. The filenanfes and“..” are aWays ignored wheiGLOBIGNORE is
set and not nullHowever, $tting GLOBIGNORE to a non-null value has the effect of enablingdbtglob
shell option, so all other filenames beginning with.’& will match. To get the old behavior of ignoring
filenames beginning with ‘a.”, make“ .*” one of the patterns iBLOBIGNORE . The dotglob option is
disabled wheiGLOBIGNORE is unset.

Pattern Matching

Any character that appears in a pattern, other than the special pattern characters desonbeutcbles
itself. TheNUL character may not occur in a patters.backslash escapes the following character; the
escaping backslash is discarded when matching. The special pattern characters must be quoseel if the
to be matched literally.

The special pattern characterséie following meanings:

* Matches aw string, including the null string. When trigobstar shell option is enabled,
and* is used in a pathname expansion context, djacent*s used as a single pattern
will match all files and zero or more directories and subdirectories. If followed/by a
two adjacent*s will match only directories and subdirectories.

? Matches ap single character.

[--] Matches ap one of the enclosed characte®s.pair of characters separated byyalen
denotes aange expressionany character that falls between thosenteharacters, inclu-
sive, using the current localg’'mllating sequence and character set, is matched. If the
first character following thg¢ is a! or a” then ary character not enclosed is matched.
The sorting order of characters in rang@ressions is determined by the current locale
and the values of theC_COLLATE or LC_ALL shell variables, if setTo dbtain the tra-
ditional interpretation of range expressions, wharel] is equvalent to[abcd], set value
of theLC_ALL shell variable taC, or enable theglobasciirangesshell option. A — may
be matched by including it as the first or last character in theAseimay be matched by
including it as the first character in the set.

Within [and], character classesan be specified using the synfaslass], whereclass
is one of the following classes defined in the POSIX standard:

alnum alpha ascii blank cntrl digit graph lower print punct space
upper word xdigit

A character class matchesyacharacter belonging to that clas$he word character
class matches letters, digits, and the character _.

Within [and], an equivalence classan be specified using the syntgc=], which
matches all characters with the same collation weight (as defined by the current locale) as
the charactec.

Within [and], the synta).symbol] matches the collating symbsymbol

If the extglob shell option is enabled using tebopt builtin, several extended pattern matching operators
are recognized. In the following descriptiomattern-listis a list of one or more patterns separated py a
Composite patterns may be formed using one or more of the following sub-patterns:

GNU Bash 4.3 2014 February 2 24

BASH(1) BASH(1)

?(pattern-list)

Matches zero or one occurrence of theagipatterns
*(pattern-lisy)

Matches zero or more occurrences of tivergpatterns
+(pattern-lisf

Matches one or more occurrences of thvergpatterns
@ (pattern-lisy)

Matches one of the ggn patterns
I(pattern-lisf)

Matches anything except one of theegi patterns

Quote Remawal
After the preceding expansions, all unquoted occurrences of the chakattersl " that did not result
from one of the ab@ e)pansions are remed.

REDIRECTION
Before a command isxecuted, its input and output may kelirectedusing a special notation interpreted
by the shell. Redirection allows commands’ file handles to be duplicated, opened, closed, made to refer to
different files, and can change the files the command reads from and wriRRsdicection may also be
used to modify file handles in the current shedication ewironment. Thedollowing redirection operators
may precede or appear anywhere withisiraple commanar may follov a command Redirections are
processed in the order thappeay from left to right.

Each redirection that may be preceded by a file descriptor number may instead be preceded by a word of
the form {varnamé. In this case, for each redirection operator except >&- and <&-, the shell will allocate

a file descriptor greater than or equal to 10 and assignvarttame If >&- or <&- is preceded by\ar-

namé@, the value ofvarnamedefines the file descriptor to close.

In the followving descriptions, if the file descriptor number is omitted, and the first character of the redirect-
ion operator is<, the redirection refers to the standard input (file descriptor 0). If the first character of the
redirection operator is, the redirection refers to the standard output (file descriptor 1).

The word following the redirection operator in the faling descriptions, unless otherwise noted, is sub-
jected to brace expansion, tildepansion, parameter and variable expansion, command substitution, arith-
metic expansion, quote rewah pathname xpansion, and word splitting. If it expands to more than one
word, bashreports an error.

Note that the order of redirections is significaltr example, the command
Is > dirlist 2>& 1

directs both standard output and standard error to thdidik , while the command
Is 2>& 1 > dirlist

directs only the standard output to fillist, because the standard error was duplicated from the standard
output before the standard output was redirectelitlist .

Bash handles seeral filenames specially when thare used in redirections, as described in the viotig
table:

/dev/fd/fd
If fd is a valid integeffile descriptoffd is duplicated.
/dev/stdin
File descriptor 0 is duplicated.
/dev/stdout
File descriptor 1 is duplicated.
/dev/stderr
File descriptor 2 is duplicated.
/dev/tcphostport
If hostis a valid hostname or Internet address, poid is an integer port number or ser
vice namepashattempts to open the corresponding TCP socket.

GNU Bash 4.3 2014 February 2 25

BASH(1) BASH(1)

/dev/udphostport
If hostis a valid hostname or Internet address, poid is an integer port number or ser
vice namepashattempts to open the corresponding UDP socket.

A failure to open or create a file causes the redirection to fail.

Redirections using file descriptors greater than 9 should be used with care; msyheonflict with file
descriptors the shell uses internally.

Redirecting Input
Redirection of input causes the file whose name results from the expansiorddd be opened for read-
ing on file descripton, or the standard input (file descriptor Oifs not specified.

The general format for redirecting input is:
[n]<word

Redirecting Output
Redirection of output causes the file whose name results fromphason ofword to be opened for writ-
ing on file descripton, or the standard output (file descriptor 1nifs not specified.If the file does not
exist it is created; if it does exist it is truncated to zero size.

The general format for redirecting output is:
[n]>word

If the redirection operator is, and thenoclobber option to thesetbuiltin has been enabled, the redirection
will fail if the file whose name results from thgpansion ofword exists and is a regular file. If the redi-
rection operator i&|, or the redirection operator isand thenoclobber option to thesetbuiltin command

is not enabled, the redirection is attempteehef the file named byvord exists.

Appending Redirected Output
Redirection of output in thisahion causes the file whose name results from the expansimrdbfo be
opened for appending on file descriptoor the standard output (file descriptor 1hifs not specified.If
the file does not exist it is created.

The general format for appending output is:
[n]>>word
Redirecting Standard Output and Standard Error

This construct alls both the standard output (file descriptor 1) and the standard error output (file descrip-
tor 2) to be redirected to the file whose name is the expanswoordf

There are tw formats for redirecting standard output and standard error:

&>word
and
>& word

Of the two forms, the first is preferred. This is semantically edent to
>word 2>& 1

When using the second formrprd may not expand to a number-ar If it does, other redirection operators
apply (seéduplicating File Descriptors below) for compatibility reasons.

Appending Standard Output and Standard Error
This construct alls both the standard output (file descriptor 1) and the standard error output (file descrip-
tor 2) to be appended to the file whose name is the expansiarf

The format for appending standard output and standard error is:
&>>word
This is semantically equalent to

>>word 2>& 1

GNU Bash 4.3 2014 February 2 26

BASH(1) BASH(1)

(seeDuplicating File Descriptors below).

Here Documents
This type of redirection instructs the shell to read input from the current source until a line containing only
delimiter (with no trailing blanks) is seerll of the lines read up to that point are then used as the stan-
dard input for a command.

The format of here-documents is:

<<[-]word
here-document
delimiter

No parameter and variable expansion, command substitution, arithxygieseon, or pathnamegansion

is performed omword. If any characters irword are quoted, thdelimiter is the result of quote reraa on
word, and the lines in the here-document are pamded. Ifwordis unquoted, all lines of the here-docu-
ment are subjected to parameter expansion, command substitution, and aritkpaetitom, the character
sequencénewline>is ignored, and must be used to quote the charactg®sand ".

If the redirection operator is<—, then all leading tab characters are stripped from input lines and the line
containingdelimiter. This allows here-documents within shell scripts to be indented in a natural fashion.

Here Srings
A variant of here documents, the format is:

<<<word

Theword undegoes brace expansion, tilde expansion, parameteraiable expansion, command substi-
tution, arithmetic expansion, and quote remho Pathname expansion andomd splitting are not per
formed. Theesult is supplied as a single string to the command on its standard input.

Duplicating File Descriptors
The redirection operator

[n]<&word

is used to duplicate input file descriptot.word expands to one or more digits, the file descriptor denoted
by n is made to be a cgpf that file descriptor If the digits inword do not specify a file descriptor open
for input, a redirection error occur#. word evduates to-, file descriptom is closed.If nis not specified,
the standard input (file descriptor 0) is used.

The operator
[n]>&word

is used similarly to duplicate output file descriptoifsn is not specified, the standard output (file descrip-
tor 1) is used. If the digits imvord do not specify a file descriptor open for output, a redirection error
occurs. Ifword evduates to-, file descriptom is closed. As a special casenifs omitted, andvord does

not expand to one or more digits 6rthe standard output and standard error are redirected as described
previously.

Moving File Descriptors
The redirection operator

[n]<&digit—

moves the file descriptodigit to file descriptomn, or the standard input (file descriptor Oxifs not speci-
fied. digit is closed after being duplicatedrio

Similarly, the redirection operator
[n]>&digit—

moves the file descriptodigit to file descripton, or the standard output (file descriptor 1piis not speci-
fied.

GNU Bash 4.3 2014 February 2 27

BASH(1) BASH(1)

Opening File Descriptors for Reading and Writing
The redirection operator

[n]<>word

causes the file whose name is the expansiowoofl to be opened for both reading and writing on file
descriptom, or on fie descriptor 0 ifh is not specified. If the file does not exist, it is created.

ALIASES
Aliasesallow a dring to be substituted for a word when it is used as the first word of a simple command.
The shell maintains a list of aliases that may be set and unset wihathandunalias builtin commands
(seeSHELL BUILTIN COMMANDS below). The first word of each simple command, if unquoted, is
checled to see if it has an alias. If so, thairdis replaced by the text of the alias. The charatt&s,
and= and ay of the shellmetacharacter®r quoting characters listed algomay not appear in an alias
name. Theeplacement t& may contain anvalid shell input, including shell metacharacters. The first
word of the replacement text is tested for aliases, butrd ¥hat is identical to an alias being expanded is
not expanded a second time. This means that one maysdtids —F, for instance, antashdoes not try
to recursrely expand the replacementite If the last character of the alias value islank, then the net
command word following the alias is also checked for alias expansion.

Aliases are created and listed with #tes command, and remed with theunalias command.

There is no mechanism for using arguments in the replacemeéentftarguments are needed, a shell func-
tion should be used (SE&INCTIONS below).

Aliases are not expanded when the shell is not inteeactnless theexpand_aliasesshell option is set
usingshopt (see the description shoptunderSHELL BUILTIN COMMANDS below).

The rules concerning the definition and use of aliases ared@neonfusing.Bash always reads at least
one complete line of input beforgeeuting ary of the commands on that line. Aliases are expanded when
a ommand is read, not when it igeeuted. Thereforean alias definition appearing on the same line as
another command does not ¢aéffect until the next line of input is read. The commands following the
alias definition on that line are not affected by the akas. Thisbehaior is also an issue when functions
are eecuted. Aliasesre epanded when a function definition is read, not when the functioxecsited,
because a function definition is itself a compound commasda consequence, aliases defined in a func-
tion are not wailable until after that function isxecuted. D be sfe, alvays put alias definitions on a sepa-
rate line, and do not uséiasin compound commands.

For aimost every purpose, aliases are superseded by shell functions.

FUNCTIONS
A shell function, defined as described abander SHELL GRAMMAR , stores a series of commands for
later execution. Whenthe name of a shell function is used as a simple command name, the list of com-
mands associated with that function namexegeted. Functiongre executed in the context of the current
shell; no ne process is created to interpret them (contrast this withxdmigon of a shell script). When a
function is &ecuted, the @uments to the function become the positional parameters duringgtgien.
The special parametéris updated to reflect the change. Special paran@déteunchanged. The first ele-
ment of theFUNCNAME variable is set to the name of the function while the functiomésiging.

All other aspects of the shelkezution environment are identical between a function and its caller with
these gceptions: theDEBUG andRETURN traps (see the description of ttrap builtin under SHELL
BUILTIN COMMANDS belaw) are not inherited unless the function has beeenghetrace attribute (see

the description of thdeclare builtin below) or the-o functrace shell option has been enabled with Het
builtin (in which case all functions inherit ti2EBUG andRETURN traps), and th&€RR trap is not inher

ited unless theo errtrace shell option has been enabled.

Variables local to the function may be declared withltdoal builtin command. Ordinarily, variables and
their values are shared between the function and its caller.

The FUNCNEST variable, if set to a numeric value greater than 0, defines a maximum function nesting
level. Functioninvocations that exceed the limit cause the entire command to abort.

GNU Bash 4.3 2014 February 2 28

BASH(1) BASH(1)

If the builtin commandeturn is executed in a function, the function completes axetation resumes with
the next command after the function callny command associated with tiRETURN trap is eecuted
before eecution resumes. When a function completes, #iaas of the positional parameters and the spe-
cial parametett are restored to the valuesyh®ad prior to the functios’ execution.

Function names and definitions may be listed with-theption to thedeclare or typeset builtin com-
mands. The-F option todeclare or typesetwill list the function names only (and optionally the source
file and line numbeif the extdebugshell option is enabled). Functions may be exported so that subshells
automatically hee them defined with thef option to theexport builtin. A function definition may be
deleted using thef option to theunsetbuiltin. Note that shell functions and variables with the same name
may result in multiple identically-named entries in the environment passed to the gtilelfen. Care
should be taken in cases where this may cause a problem.

Functions may be recurel The FUNCNEST variable may be used to limit the depth of the function call
stack and restrict the number of functiondcations. Bydefault, no limit is imposed on the number of
recursve alls.

ARITHMETIC EVALU ATION
The shell allvs arithmetic expressions to beakated, under certain circumstances (seel¢heand
declare builtin commands andrithmetic Expansion). Evaluation is done in fed-width integers with no
check for @erflow, though dvision by 0 is trapped and flagged as an erfidre operators and their prece-
dence, associaity, and values are the same as in the C langudde following list of operators is
grouped into leels of equal-precedence operators. Thelkeare listed in order of decreasing precedence.

id++ id——
variable post-increment and post-decrement
++id —-id
variable pre-increment and pre-decrement
-+ unary minus and plus
- logical and bitwise rggtion
** exponentiation
*/% multiplication, division, remainder
+ - addition, subtraction
<<>> left and right bitwise shifts
<=>=<>
comparison
=== equality and inequality
& bitwise AND
a bitwise exclusie CR
| bitwise OR
&& logical AND
Il logical OR

expr?expr:expr
conditional operator

=*= [=20p= 4= —= <<= >>= §= "= |:
assignment

exprl, expr2
comma

Shell variables are allowed as operands; parameter expansion is performed before the expredsion is e
ated. Wthin an expression, shell variables may also be referenced by name without using the parameter
expansion syntaxA shell variable that is null or unsevatuates to 0 when referenced by name without
using the parameter expansion syntdhe value of a variable isva@luated as an arithmeticxgression

when it is referenced, or when ariable which has beenvgh the integer attribute usingdeclare 4 is
assigned aalue. Anull value galuates to 0.A shell variable need not ka its integer attribute turned on

to be used in an expression.

Constants with a leading 0 are interpreted as octal numBetsading Ox or 0X denotes }sdecimal.

GNU Bash 4.3 2014 February 2 29

BASH(1) BASH(1)

Otherwise, numbers takhe form pase#n, where the optiondlaseis a decimal number between 2 and 64
representing the arithmetic base, and a number in that baséf base#is omitted, then base 10 is used.
When specifyingn, the digits greater< than 9 are represented by the lowercase letters, the uppercase letters,
@, and _, in that ordelf baseis less than or equal to 36, lowercase and uppercase letters may be used
interchangeably to represent numbers between 10 and 35.

Operators arevaluated in order of precedenc8ub-&pressions in parentheses avelgated first and may
overide the precedence rules abo

CONDITIONAL EXPRESSIONS
Conditional expressions are used by[fheompound command and ttesst and[builtin commands to test
file attributes and perform string and arithmetic comparisons. Expressions are formed from whagfollo
unary or binary primaries. If gnfile argument to one of the primaries is of the folaev/fd/n then file
descriptorn is checled. If the file algument to one of the primaries is one/@év/stdin /dev/stdout or
/dev/stderr file descriptor 0, 1, or 2, respedy, is checked.

Unless otherwise specified, primaries that operate on filesvfejimbolic links and operate on thedat
of the link, rather than the link itself.

When used witH[, the < and > operators sort lexicographically using the current locdlee test com-
mand sorts using ASCII ordering.

—afile True iffile exists.
-bfile True iffile exists and is a block special file.
—cfile True iffile exists and is a character special file.
—dfile True iffile exists and is a directory.
—efile True iffile exists.
—ffile True iffile exists and is a regular file.
—gfile True iffile exists and is set-group-id.
—-hfile True iffile exists and is a symbolic link.
-k file True iffile exists and its “sticky’bit is set.
—pfile True iffile exists and is a named pipe (FIFO).
—r file True iffile exists and is readable.
—sfile True iffile exists and has a size greater than zero.
-tfd True if file descriptorfd is open and refers to a terminal.
—ufile True iffile exists and its set-user-id bit is set.
-w file True iffile exists and is writable.
—x file True iffile exists and is xecutable.
-G file True iffile exists and is owned by the effacigoup id.
-L file True iffile exists and is a symbolic link.
—-Nfile True iffile exists and has been modified since it was last read.
—Ofile True iffile exists and is owned by the effactiuser id.
—Sfile True iffile exists and is a socket.
filel —effile2
True iffilel andfile2 refer to the same device and inode numbers.
filel-nt file2
True iffilelis newer (according to modification date) tlide?, or if filel exists andfile2 does not.
filel —ot file2
True iffilelis older tharfile2, or if file2 exists andfile1 does not.
—0 optname
True if the shell optiomptnames enabled. See the list of options under the description efdhe
option to thesetbuiltin below.
-V varname
True if the shell variablgarnameis set (has been assigned a value).
—-R varname
True if the shell variablgarnameis set and is a name reference.

GNU Bash 4.3 2014 February 2 30

BASH(1) BASH(1)

-z string

True if the length o$tringis zero.
string
—n string

True if the length otring is non-zero.

string1l== string2

stringl= string2
True if the strings are equak should be used with thest command for POSIX conformance.
When used with th§ command, this performs pattern matching as describegegBompound
Commands.

string1!= string2
True if the strings are not equal.

string1< string2
True if string1sorts beforestring2lexicographically.

string1> string2
True if string1sorts aftestring2lexicographically.

argl OP arg2
OP is one of-eq, —ne, —It, -le, —gt, or —ge These arithmetic binary operators return truargfl
is equal to, not equal to, less than, less than or equal to, greater than, or greater than or equal to
arg2, respectiely. Arglandarg2 may be positie a negdive integers.

SIMPLE COMMAND EXPANSION
When a simple command igeeuted, the shell performs the folllng expansions, assignments, and redi-
rections, from left to right.

1. Thewords that the parser has marked asiable assignments (those preceding the command
name) and redirections areved for later processing.

2. Thewords that are not variable assignments or redirectionsxpanded. Ifary words remain
after expansion, the first word is taken to be the name of the command and the remaiding w
are the arguments.

Redirectionsire performed as described ebanderREDIRECTION .

Thetext after the= in each variable assignment undergoes tilde expansion, paraxpdesien,
command substitution, arithmetic expansion, and quotevarbefore being assigned to thariz
able.

If no command name results, the variable assignments affect the current\@hetireent. Otherwisehe
variables are added to the environment of theceted command and do not affect the current shell en
ronment. Ifary of the assignments attempts to assign a value to a readwordyple, an error occurs, and
the command exits with a non-zero status.

If no command name results, redirections are performed, but ddfexttthe current shell gmonment. A
redirection error causes the command to exit with a non-zero status.

If there is a command name left after expansiarc@ion proceeds as described beldOtherwise, the
command gits. If one of the expansions contained a command substitution, the exit status of the command
is the it status of the last command substitution performed. If there were no command substitutions, the
command exits with a status of zero.

COMMAND EXECUTION
After a command has been split intonds, if it results in a simple command and an optional listgif-ar
ments, the following actions are taken.

If the command name contains no slashes, the shell attempts to locate it. If there exists a shell function by
that name, that function isvioked as @scribed abee in FUNCTIONS. If the name does not match a func-
tion, the shell searches for it in the list of shelltns. If a match is found, that builtin is woked.

GNU Bash 4.3 2014 February 2 31

BASH(1) BASH(1)

If the name is neither a shell function norwiltin, and contains no slashdmshsearches each element of
the PATH for a directory containing arxecutable file by that nameBash uses a hash table to remember
the full pathnames ofxecutable files (sedash under SHELL BUILTIN COMMANDS below). A full
search of the directories PATH is performed only if the command is not found in the hash table. If the
search is unsuccessful, the shell searches for a defined shell functionamammednd_not found_han-

dle. If that function exists, it is iroked with the original command and the original commaratjuments

as its arguments, and the funct®mexit status becomes the exit status of the shell. If that function is not
defined, the shell prints an error message and returns an exit status of 127.

If the search is successful, or if the command name contains one or more slashes, thecsted| the
named program in a separakeaition ewironment. Agument 0 is set to the nameai, and the remain-
ing arguments to the command are set to the argumeets diary.

If this execution fails because the file is not iReeutable format, and the file is not a directdtyis
assumed to be shell script a file containing shell command#\ subshell is spaned to &ecute it. This
subshell reinitializes itself, so that the effect is as ifva steell had been woked to handle the script, with
the exception that the locations of commands remembered by the paremagkdelon under SHELL
BUILTIN COMMANDS) are retained by the child.

If the program is a file beginning witH, the remainder of the first line specifies an interpreter for the pro-
gram. Theshell xecutes the specified interpreter on operating systems that do not handiethislge
format themselgs. Thearguments to the interpreter consist of a single optional argument following the
interpreter name on the first line of the program, wedld by the name of the program, followed by the
command arguments, if gn

COMMAND EXECUTION ENVIRONMENT
The shell has aexecution environmentvhich consists of the following:

. open files inherited by the shell avatation, as modified by redirections supplied to ¢kec
builtin

. the current working directory as setdxy, pushd, or popd, or inherited by the shell atwocation

. the file creation mode mask as seubyask or inherited from the shedi’parent

. current traps set blyap

. shell parameters that are set grimble assignment or witetor inherited from the shed’parent
in the environment

. shell functions defined duringcecution or inherited from the sheallparent in the environment

. options enabled atwocation (either by default or with command-line arguments) aeby

. options enabled bghopt

. shell aliases defined withlias

. various process IDs, including those of background jobs, the vafif afd the value oPPID

When a simple command other thanudtin or shell function is to bexecuted, it is ivoked in a ®parate
execution environment that consists of the faling. Unlessotherwise noted, the values are inherited from

the shell.

. the shells goen files, plus anmodifications and additions specified by redirections to the com-
mand

. the current working directory

. the file creation mode mask

. shell variables and functions marked for export, along with variables exported for the command,

passed in the environment

. traps caught by the shell are reset to @lees inherited from the shellparent, and traps ignored
by the shell are ignored

GNU Bash 4.3 2014 February 2 32

BASH(1) BASH(1)

A command imnoked in this separate environment cannot affect the shaedcution environment.

Command substitution, commands grouped with parentheses, and asynchronous commarakedie in

a wbshell environment that is a duplicate of the shelirenment, except that traps caught by the shell are
reset to the alues that the shell inherited from its parent abéation. Builtincommands that arevioked

as part of a pipeline are alsgeeuted in a subshell emonment. Changemade to the subshell&ron-
ment cannot affect the sheléxecution environment.

Subshells spawned txesute command substitutions inherit the value of theoption from the parent
shell. Whemot inposixmode,bashclears the-e option in such subshells.

If a command is followed by & and job control is not aet, the default standard input for the command
is the empty filgdev/null Otherwise, the moked command inherits the file descriptors of the calling shell
as modified by redirections.

ENVIRONMENT
When a program is woked it is given an aray of strings called thenvironment This is a list of
name-valuepairs, of the fornrmame=value

The shell provides seral ways to manipulate the @inonment. Oninvocation, the shell scans itsvo
ervironment and creates a parameter for each name found, automatically markimgg@ofoto child pro-
cesses. Eecuted commands inherit theveonment. Theexport anddeclare -x commands ally param-
eters and functions to be added to and deleted from theement. Ifthe \alue of a parameter in the
ervironment is modified, the mevalue becomes part of the environment, replacing the old. Then
ment inherited by gnexecuted command consists of the slsailfiitial environment, whose values may be
modified in the shell, less pipairs remweed by the unsetcommand, plus anadditions via theexport and
declare -x commands.

The environment for ansimple commanar function may be augmented temporarily by prefixing it with
parameter assignments, as described@boPARAMETERS. These assignment statements affect only the
environment seen by that command.

If the —k option is set (see theet builtin command below), theall parameter assignments are placed in
the environment for a command, not just those that precede the command name.

Whenbash invokes an &ternal command, theaviable is set to the full flename of the command and
passed to that command in its environment.

EXIT STATUS
The exit status of arxecuted command is thelue returned by theaitpid system call or equélent func-
tion. Exitstatusesdll between 0 and 255, though, as explainedviealte shell may use values aeol25
specially Exit statuses from shell builtins and compound commands are also limited to this range. Under
certain circumstances, the shell will use special values to indicate specific failure modes.

For the shells purposes, a command which exits with a zero exit status has succéededit status of
zero indicates succesA. non-zero exit status indicateailfire. Whera command terminates on a fatal sig-
nal N, bashuses the value of 128Hkas the exit status.

If a command is not found, the child process createddouge it returns a status of 127. If a command is
found but is notxecutable, the return status is 126.

If a command fails because of an error during expansion or redirection, the exit status is greater than zero.

Shell builtin commands return a status ofr0€) if successful, and non-zertalse if an error occurs while
they execute. Allbuiltins return an exit status of 2 to indicate incorrect usage.

Bashitself returns the exit status of the last commaretgted, unless a syntax error occurs, in which case
it exits with a non-zeroalue. Sealso theexit builtin command bele.

SIGNALS
Whenbashis interactve, in the absence of griraps, it ignoreSIGTERM (so thatkill 0 does not kill an
interactive dell), andSIGINT is caught and handled (so that thait builtin is interruptible). In all cases,
bashignoresSIGQUIT. If job control is in effectbashignoresSIGTTIN, SIGTTOU, andSIGTSTP.

GNU Bash 4.3 2014 February 2 33

BASH(1) BASH(1)

Non-kuiltin commands run byash have dgnal handlers set to the values inherited by the shell from its
parent. Whenob control is not in déct, asynchronous commands ignSI&INT andSIGQUIT in addi-

tion to these inherited handler€ommands run as a result of command substitution ignoreetihedrd-
generated job control signa&$GTTIN , SIGTTOU, andSIGTSTP.

The shell exits by dafilt upon receipt of &IGHUP. Before exiting, an interact <hell resends the
SIGHUP to all jobs, running or stopped. Stopped jobs are SERCONT to ensure that tlyereceie the
SIGHUP. To prevent the shell from sending the signal to a particular job, it should bevednfimm the
jobs table with thedisown builtin (see SHELL BUILTIN COMMANDS belaov) or marked to not reces
SIGHUP usingdisown —h

If the huponexit shell option has been set wihopt, bashsends &IGHUP to all jobs when an interagé
login shell exits.

If bashis waiting for a command to complete and reezia $gnal for which a trap has been set, the trap
will not be executed until the command completéd/henbashis waiting for an asynchronous command
via thewait builtin, the reception of a signal for which a trap has been set will causeaih®uiltin to
return immediately with an exit status greater than 128, immediately after which the wequiee:

JOB CONTROL
Job control refers to the ability to selegly stop Guspenyl the execution of processes and continue
(resum@ their execution at a later pointA user typically employs this facility via an interagiinterface
supplied jointly by the operating system keraddrminal drver and bash

The shell associates jab with each pipeline.lt keeps a table of currentlkecuting jobs, which may be
listed with thejobs command. Whelbashstarts a job asynchronously (in thackground, it prints a line
that looks like:

[1] 25647

indicating that this job is job number 1 and that the process ID of the last process in the pipeline associated
with this job is 25647.All of the processes in a single pipeline are members of the sam8agsh uses
the job abstraction as the basis for job control.

To facilitate the implementation of the user indéed to job control, the operating system maintains the
notion of acurrent terminal pocess group ID Members of this process group (processes whose process
group ID is equal to the current terminal process group ID)wedeiboard-generated signals sucls#s-

INT. These processes are said to be inftlegound. Backgroundprocesses are those whose process
group ID differs from the terminal’s; such processes are immuneytm&rd-generated signals. Only fore-
ground processes are allowed to read fronif tine user so specifies witity tostop , write to the ter
minal. Backgroungrocesses which attempt to read from (write to wétgntostop is in effect) the
terminal are sent 8IGTTIN (SIGTT OU) signal by the &rnels terminal drver, which, unless caught, sus-
pends the process.

If the operating system on whidiash is running supports job contrddash contains facilities to use it.

Typing thesuspenccharacter (typicallyZ, Control-Z) while a process is running causes that process to be
stopped and returns control bash Typing the delayed suspendharacter (typically’Y, Control-Y)

causes the process to be stopped when it attempts to read input from the terminal, and control to be returned
to bash The user may then manipulate the state of this job, usinggltemmand to continue it in the
background, thég command to continue it in the foreground, or kile command to kill it. A “Z takes

effect immediatelyand has the additional side effect of causing pending output and typeahead to be dis-
carded.

There are a number of ways to refer to a job in the shell. The cha&¥adteroduces a job specification
(jobsped. Jobnumbern may be referred to &n. A job may also be referred to using a prefix of the
name used to start it, or using a substring that appears in its commangdirexample,%ce refers to a
stoppedce job. If a prefix matches more than one jdigsh reports an errorUsing %?ce, on the other
hand, refers to gnjob containing the stringein its command line. If the substring matches more than one
job, bashreports an errorThe symbol£6% and%+ refer to the shel motion of thecurrent joy which is

the last job stopped while itag in the foreground or started in the backgrouHuke previous jobmay be

GNU Bash 4.3 2014 February 2 34

BASH(1) BASH(1)

referenced usingb6—. If there is only a single jol86+ and%- can both be used to refer to that.jdb
output pertaining to jobs (e.g., the output of jitess command), the current job isagys flagged with &,
and the previous job with-a A single % (with no accompgimg job specification) also refers to the-cur
rent job.

Simply naming a job can be used to bring it into thediaend:%1 is a synonym fof' fg %1, bringing
job 1 from the background into the fgreund. Similarly “ %31 &'’ resumes job 1 in the background,
equialent to“ bg %1".

The shell learns immediately whemea job changes statdNormally, bashwaits until it is about to print a
prompt before reporting changes in a gofatus so as to not interruptyaother output. If the-b option to
the set builtin command is enabledyash reports such changes immediateny trap onSIGCHLD is
executed for each child that exits.

If an attempt to @t bashis made while jobs are stopped, [bthe checkjobsshell option has been enabled
using theshopt builtin, running), the shell prints a aming message, and, if tleheckjobs option is
enabled, lists the jobs and their statusBse jobs command may then be used to inspect their status. If a
second attempt taxé is made without an intervening command, the shell does not print anath@ngy

and amy stopped jobs are terminated.

PROMPTING
When e&ecuting interactiely, bash displays the primary prompS1iwhen it is ready to read a command,
and the secondary promps2when it needs more input to complete a commaBdsh allows these
prompt strings to be customized by inserting a number of backslash-escaped special characters that are
decoded as follows:

\a an ASCII bell character (07)
\d the date in "Weekday Month Date" format (e.g., "Tue May 26")
\D{format

the format is passed tetrftimg3) and the result is inserted into the prompt string; an
emptyformatresults in a locale-specific time representation. The braces are required

\e an ASCII escape character (033)

\h the hostname up to the first '’

\H the hostname

\j the number of jobs currently managed by the shell

\l the basename of the sheliérminal device name

\n newline

\r carriage return

\s the name of the shell, the basenam&@fthe portion following the final slash)
\t the current time in 24-hour HH:MM:SS format

\T the current time in 12-hour HH:MM:SS format

\@ the current time in 12-hour am/pm format

\A the current time in 24-hour HH:MM format

\u the username of the current user

\v the version obash(e.g., 2.00)

\V the release dbash, version + patch kel (e.g., 2.00.0)

\w the current working directoryith $HOME abbreiated with a tilde (uses the value of the

PROMPT_DIRTRIM variable)
\W the basename of the current working directaith $HOME abbreviated with a tilde

\I the history number of this command

\# the command number of this command

\$ if the effective UID is 0, a#, otherwise &

\nnn the character corresponding to the octal number

\\ a backslash

\[beggin a sequence of non-printing characters, which could be used to embed a terminal
control sequence into the prompt

\] end a sequence of non-printing characters

GNU Bash 4.3 2014 February 2 35

BASH(1) BASH(1)

The command number and the history number are usudiyatif: the history number of a command is its
position in the history list, which may include commands restored from the history fil&li&GB@RY

below), while the command number is the position in the sequence of commendsed during the cur

rent shell session. After the string is decoded, it is expanded via parameter expansion, command substitu-
tion, arithmetic expansion, and quote rempsubject to the value of thomptvars shell option (see the
description of theshoptcommand undeSHELL BUILTIN COMMANDS below).

READLINE
This is the library that handles reading input when using an intexah#ll, unless the-—noediting option
is given at sell invocation. Lineediting is also used when using the option to theread builtin. By
default, the line editing commands are similar to those of EmAcsi-style line editing inteidice is also
awailable. Lineediting can be enabled atyatime using the-o emacsor —0 vi options to theset builtin
(seeSHELL BUILTIN COMMANDS below). To turn of line editing after the shell is running, use e
emacsor +0 vi options to thesetbuiltin.

Readline Notation
In this section, the Emacs-style notation is used to demystrékes. Controkeys are denoted by ey,
e.g., C—n means Control-NSimilarly, metakeys are denoted by Mgy, so M—x means Meta—X.(On
keyboards without anetakey, M—x means ESQ, i.e., press the Escapeykten thex key. This males
ESC themeta pefix The combination M—Cx means ESC-Controk- or press the Escapesk then hold
the Control ley while pressing the key.)

Readline commands may bergi numericargumentswhich normally act as a repeat coutometimes,
however, it is the sign of the argument that is significaRessing a ngaive agument to a command that
acts in the forard direction (e.g.kill-line) causes that command to act in a backward directi@om-
mands whose behavior with arguments deviates from this are noted belo

When a command is describedlkilting text, the text deleted is ged for possible future retn@l (yank-

ing). Thekilled text is saed in akill ring. Consecutie kills cause the text to be accumulated into one unit,
which can be yanked all at once. Commands which do not kill text separate the chunks of text on the kill
ring.

Readline Initialization
Readline is customized by putting commands in an initialization filer{tharc file). Thename of this file
is taken from the value of thEPUTRC variable. Ifthat variable is unset, the defaulffisnputrc. When a
program which uses the readline library starts up, the initialization file is read, anelythedings and
variables are set. There are only avfeasic constructs aeed in the readline initialization fileBlank
lines are ignored. Lines beginning withi#¥are comments. Lines beginning witlfandicate conditional
constructs. Othdmes denote &y hindings and variable settings.

The default ky-bindings may be changed with arputrc file. Otherprograms that use this library may
add their own commands and bindings.

For example, placing

M-Control-u: unversal-argument
or
C-Meta-u: uniersal-argument
into theinputrc would male M-C—-u eecute the readline commandiversal-argument

The following symbolic character names are recognigdBOUT, DEL, ESC LFD, NEWLINE RET,
RETURN SPC SFACE, and TAB.

In addition to command names, readline allowgsko be lmund to a string that is inserted when tleg ls
pressed (anacrg.

Readline Key Bindings
The syntax for controllingdy bindings in theinputrc file is simple. All that is required is the name of the
command or the & of a macro and agly quence to which it should be bound. The name may be speci-
fied in one of tw ways: as a symbolicey rame, possibly wittMeta— or Control- prefixes, or as ady
sequence.

GNU Bash 4.3 2014 February 2 36

BASH(1) BASH(1)

When using the fornkeyname function—-nameor macrq keynameis the name of ady elled out in
English. Fer example:

Control-u: unversal-argument
Meta-Rubout: backward-kill-word
Control-o: "> output”

In the abee example,C-u is bound to the functiooniversal-argument, M—DEL is bound to the func-
tion backward-kill-word , and C-o is bound to run the macra@ressed on the right hand side (that is, to
insert the text output into the line).

In the second formkeyseq": function—nameor macrqg keyseqdiffers fromkeynameabove in that strings
denoting an entiredy squence may be specified by placing the sequence within double gBotes.

GNU Emacs styledy escapes can be used, as in the following example, but the symbolic character names
are not recognized.

"\C-u": universal-argument

"\C-x\C-r": re—read-init—file

"\e[11™: "Function key 1"
In this ekample,C-u is again bound to the functioaniversal-argument. C-x C-r is bound to the func-
tion re-read-init-file, and ESC [1 1 "is bound to insert the tekunction Key 1

The full set of GNU Emacs style escape sequences is

\C- control prefix
\M- meta prefix
\e an escape character
\\ backslash
\" literal "
\ literal *
In addition to the GNU Emacs style escape sequences, a second set of backslash egaitgi#s:is a
\a alert (bell)
\b backspace
\d delete
\f form feed
\n newline
\r carriage return
\t horizontal tab
\v vertical tab

\nnn the eight-bit character whose value is the octal vaiugone to three digits)
\xHH the eight-bit character whose value is the hexadecimal iu@ne or tvo hex dgits)

When entering the x¢ of a macro, single or double quotes must be used to indicate a macro definition.
Unquoted text is assumed to be a function naiméhe macro bodythe backslash escapes described/@abo
are epanded. Backslashill quote ary other character in the macro text, including " and .

Bashallows the current readlineel¢ indings to be displayed or modified with thiad builtin command.
The editing mode may be switched during intevactse by using theo option to thesetbuiltin command
(seeSHELL BUILTIN COMMANDS below).

Readline Variables
Readline hasariables that can be used to further customize itsvil@haA variable may be set in thapu-
trc file with a statemen