
MicroProfile Reactive Messaging
Specification

James Roper, Clement Escoffier, Gordon Hutchison, Emily Jiang

2.0.1, September 10, 2021

Table of Contents
MicroProfile Reactive Messaging . 1

Copyright . 2

Eclipse Foundation Specification License . 2

Disclaimers . 2

Rationale . 4

Reactive Systems . 4

On JMS and Message Driven Beans . 5

Use cases. 5

Architecture . 7

Concepts . 7

Overall architecture . 7

Channel . 7

Message . 8

Message consumption with @Incoming . 9

Message production with @Outgoing. 9

Method consuming and producing. 10

Connectors . 10

Message stream operation . 11

Supported CDI scopes . 11

Supported method signatures. 12

Methods producing data . 13

Methods consuming data. 14

Methods processing data . 17

Examples of simple method streams . 23

Examples of methods using Reactive Streams or MicroProfile Reactive Streams Operators

types

 24

Message acknowledgement and negative acknowledgement . 25

Positive acknowledgement . 25

Acknowledgement Examples . 29

Negative acknowledgement . 32

Connector. 34

Connector concepts. 34

Configuration . 35

Connector attribute. 37

Acknowledgement. 37

Metrics. 39

Injecting a Publisher or PublisherBuilder . 40

Publishing messages to a channel from imperative code. 41

Assembly and validation . 44

Release Notes for MicroProfile Reactive Messaging 2.0 . 45

Functional Changes . 45

Incompatible Changes. 45

Other Changes. 45

MicroProfile Reactive Messaging

Specification: MicroProfile Reactive Messaging Specification

Version: 2.0.1

Status: Final

Release: September 10, 2021

1

Copyright
Copyright (c) 2018, 2021 Eclipse Foundation.

Eclipse Foundation Specification License
By using and/or copying this document, or the Eclipse Foundation document from which this
statement is linked, you (the licensee) agree that you have read, understood, and will comply with
the following terms and conditions:

Permission to copy, and distribute the contents of this document, or the Eclipse Foundation
document from which this statement is linked, in any medium for any purpose and without fee or
royalty is hereby granted, provided that you include the following on ALL copies of the document,
or portions thereof, that you use:

• link or URL to the original Eclipse Foundation document.

• All existing copyright notices, or if one does not exist, a notice (hypertext is preferred, but a
textual representation is permitted) of the form: "Copyright (c) [$date-of-document] Eclipse
Foundation, Inc. <<url to this license>>"

Inclusion of the full text of this NOTICE must be provided. We request that authorship attribution
be provided in any software, documents, or other items or products that you create pursuant to the
implementation of the contents of this document, or any portion thereof.

No right to create modifications or derivatives of Eclipse Foundation documents is granted
pursuant to this license, except anyone may prepare and distribute derivative works and portions
of this document in software that implements the specification, in supporting materials
accompanying such software, and in documentation of such software, PROVIDED that all such
works include the notice below. HOWEVER, the publication of derivative works of this document
for use as a technical specification is expressly prohibited.

The notice is:

"Copyright (c) [$date-of-document] Eclipse Foundation. This software or document includes
material copied from or derived from [title and URI of the Eclipse Foundation specification
document]."

Disclaimers

THIS DOCUMENT IS PROVIDED "AS IS," AND THE COPYRIGHT HOLDERS AND THE ECLIPSE
FOUNDATION MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING,
BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT THE CONTENTS OF THE DOCUMENT ARE
SUITABLE FOR ANY PURPOSE; NOR THAT THE IMPLEMENTATION OF SUCH CONTENTS WILL NOT
INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

THE COPYRIGHT HOLDERS AND THE ECLIPSE FOUNDATION WILL NOT BE LIABLE FOR ANY
DIRECT, INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE

2

DOCUMENT OR THE PERFORMANCE OR IMPLEMENTATION OF THE CONTENTS THEREOF.

The name and trademarks of the copyright holders or the Eclipse Foundation may NOT be used in
advertising or publicity pertaining to this document or its contents without specific, written prior
permission. Title to copyright in this document will at all times remain with copyright holders.
:sectnums:

3

Rationale
State-of-the-art systems must be able to adapt themselves to emerging needs and requirements,
such as market change and user expectations but also fluctuating load and inevitable failures.
Leading-edge applications are capable of dynamic and adaptive capabilities aiming to provide
responsive systems. While microservices aim to offer this agility, HTTP-based connecting tissue
tends to fail to provide the required runtime adaptations, especially when facing failures.

Asynchronous communication allows temporal decoupling of services in a microservice based
architecture. This temporal decoupling is necessary if communication is to be enabled to occur
regardless of when the parties involved in the communication are running, whether they are
loaded or overloaded, and whether they are successfully processing messages or failing.

In contrast, synchronous communication couples services together, binding their uptime, failure,
and handling of the load to each other. In a chain of synchronous interactions, the entire
conversation can only be successful if all parties in the chain are responsive - if they are all
running, processing messages successfully, and not overloaded. If just one party has a problem, all
effectively exhibit the same problem. Therefore, systems of microservices relying on synchronous
HTTP or relying on synchronous protocols tend to be fragile, and failures limit their availability.
Indeed, in a microservice-based architecture, temporal coupling results in a fragile system, with
resilience and scaling properties that are worse than a monolith, hence, it is essential for
microservice based architectures to embrace asynchronous communication as much as possible.

The role of the MicroProfile Reactive Messaging specification is to deliver a way to build systems of
microservices promoting both location transparency and temporal decoupling, enforcing
asynchronous communication between the different parts of the system.

Reactive Systems
Reactive Systems provide an architecture style to deliver responsive systems. By infusing
asynchronous messaging passing at the core of the system, applications enforcing the reactive
system’s characteristics are inherently resilient and become more elastic by scaling up and down
the number of message consumers.

Microservices as part of reactive systems interact using messages. The location and temporal
decoupling, promoted by this interaction mechanism, enable numerous benefits such as:

4

https://www.reactivemanifesto.org/

• Better failure handling as the temporal decoupling enables message brokers to resend or
reroute messages in the case of remote service failures.

• Improved elasticity as under fluctuating load the system can decide to scale up and down some
of the microservices.

• The ability to introduce new features more easily as components are more loosely coupled by
receiving and publishing messages.

The MicroProfile Reactive Messaging specification aims to deliver applications embracing the
characteristics of reactive systems.

On JMS and Message Driven Beans
Java EE offers JMS and Message Driven Beans for handling asynchronous communication;
however, there are some problems with these specifications:

• Both are designed for a technology landscape where messaging was typically on the edge of the
system to hand control of a transaction from one system to another; consequently, these
technologies can appear heavyweight when used between microservices.

• It is assumed in their design that consistency is handled using distributed transactions.
However, many message brokers, popular in microservice deployments, such as Apache Kafka,
Amazon Kinesis and Azure Event Hubs, do not support XA transactions, rather, message
acknowledgment is handled using offsets with at least once delivery guarantees.

• They do not have support for asynchronous IO; it is assumed that message processing is done on
a single thread, however, many modern specifications are moving to asynchronous IO.

Hence a lighter weight, reactive solution to messaging is desirable for MicroProfile to ensure
microservices written using MicroProfile are able to meet the demands required by the
architecture.

Use cases
MicroProfile Reactive Messaging aims to provide a way to connect event-driven microservices. The
key characteristics of the specification make it versatile and suitable for building different types of
architecture and applications.

First, asynchronous interactions with different services and resources can be implemented using
Reactive Messaging. Typically, asynchronous database drivers can be used in conjunction with
Reactive Messaging to read and write into a data store in a non-blocking and asynchronous
manner.

When building microservices, the CQRS and event-sourcing patterns provide an answer to the data
sharing between microservices. Reactive Messaging can also be used as the foundation to CQRS and
Event-Sourcing mechanism, as these patterns embrace message-passing as core communication
pattern.

IOT applications, dealing with events from various devices, and data streaming applications can
also be implemented using Reactive Messaging. The application receives events or messages,

5

process them, transform them, and may forward them to another microservices. It allows for more
fluid architecture for building data-centric applications.

6

Architecture
The Reactive Messaging specification defines a development model for declaring CDI beans
producing, consuming and processing messages. The communication between these components
uses Reactive Streams.

This specification relies on Eclipse MicroProfile Reactive Streams Operators and CDI.

Concepts
This section describes the different concepts introduced by the Reactive Messaging specification

Overall architecture

An application using Reactive Messaging is composed of CDI beans consuming, producing and
processing messages.

These messages can be wholly internal to the application or can be sent and received via different
message brokers.

Application’s beans contain methods annotated with @Incoming and @Outgoing annotations. A
method with an @Incoming annotation consumes messages from a channel. A method with an
@Outgoing annotation publishes messages to a channel. A method with both an @Incoming and an
@Outgoing annotation is a message processor, it consumes messages from a channel, does some
transformation to them, and publishes messages to another channel.

Channel

A channel is a name indicating which source or destination of messages is used. Channels are
opaque Strings.

There are two types of channel:

• Internal channels are local to the application. They allows implementing multi-step processing
where several beans from the same application form a chain of processing.

• Channels can be connected to remote brokers or various message transport layers such as
Apache Kafka or to an AMQP broker. These channels are managed by connectors.

7

https://github.com/eclipse/microprofile-reactive-streams-operators
http://cdi-spec.org/

If a component receives messages from a channel, we call this channel an upstream channel. If a
component produces messages to a channel, we call this channel a downstream channel. Messages
flow from upstream to downstream until it reaches a final consumer.

Message

At the core of the Reactive Messaging specification is the concept of message. A message is an
envelope wrapping a payload. A message is sent to a specific channel and, when received and
processed successfully, acknowledged.

Reactive Messaging application components are addressable recipients which await the arrival of
messages on a channel and react to them, otherwise lying dormant.

Messages are represented by the org.eclipse.microprofile.reactive.messaging.Message class. This
interface is intentionally kept minimal. The aim is that connectors will provide their own
implementations with additional metadata that is relevant to that connector. For instance, a
KafkaMessage would provide access to the topic and partition.

The org.eclipse.microprofile.reactive.messaging.Message#getPayload method retrieves the
wrapped payload. The org.eclipse.microprofile.reactive.messaging.Message#ack method
acknowledges the message. The org.eclipse.microprofile.reactive.messaging.Message#nack method
reports a negative acknowledgement. Note that the ack and nack methods are asynchronous as
acknowledgement is generally an asynchronous process.

Plain messages are created using:

• org.eclipse.microprofile.reactive.messaging.Message#of(T) - wraps the given payload, no
acknowledgement

• org.eclipse.microprofile.reactive.messaging.Message#of(T,
java.util.function.Supplier<java.util.concurrent.CompletionStage<java.lang.Void>>) - wraps
the given payload and provides the acknowledgment logic

• org.eclipse.microprofile.reactive.messaging.Message#of(Supplier<CompletionStage<Void>> ack,
Function<Throwable, CompletionStage<Void>> nack) - wraps the given payload and provides the
acknowledgment and negative acknowledgment logic

You can also create new Message instances by copying the content from an original message using
the withX methods:

// Create a new message with a new payload, but using the ack and nack functions from
`message`
Message<T> newMessage = message.withPayload(newPayload);
// Create a new message with a new ack and nack logic, but using the original payload
Message<T> another = message
 .withNack(...)
 .withAck(...);

8

Message consumption with @Incoming

The org.eclipse.microprofile.reactive.messaging.Incoming annotation is used on a method from a
CDI bean to indicate that the method consumes messages from the specified channel:

@Incoming("my-channel") ①
public CompletionStage<Void> consume(Message<String> message) { ②
 return message.ack();
}

1. my-channel is the channel

2. the method is called for every message sent to the my-channel channel

Reactive Messaging supports various forms of method signatures. This is detailed in the next
section.

Remember that Reactive Messaging interactions are assembled from Reactive Streams. A method
annotated with @Incoming is a Reactive Streams subscriber and so consumes messages that fit with
the message signature and its annotations. Note that the handling of the Reactive Streams protocol,
such as subscriptions and back pressure, is managed by the Reactive Messaging implementation.
The MicroProfile Reactive Streams specification used as a foundation for this version of Reactive
Messaging is a single subscriber model where a stream Publisher is connected to a single Subscriber
which controls back pressure. This implies that a Reactive Messaging channel should appear in a
single @Incoming annotation. The annotation of more than one @Incoming method to be associated
with the same channel is not supported and will cause an error during deployment.

From the user perspective, whether the incoming messages comes from co-located beans or a
remote message broker is transparent. However, the user may decide to consume a specific
subclass of Message (e.g. KafkaMessage in the following example) if the user is aware of this
characteristic:

@Incoming("my-kafka-topic")
public CompletionStage<Void> consume(KafkaMessage<String> message) { ①
 return message.ack();
}

1. Explicit consumption of a KafkaMessage

Message production with @Outgoing

The org.eclipse.microprofile.reactive.messaging.Outgoing annotation is used to annotate a method
from a CDI bean to indicate that the method publishes messages to a specified channel:

9

@Outgoing("my-channel") ①
public Message<String> publish() { ②
 return Message.of("hello"); ③
}

1. my-channel is the targeted channel

2. the method is called for every consumer request

3. you can create a plain org.eclipse.microprofile.reactive.messaging.Message using
org.eclipse.microprofile.reactive.messaging.Message#of(T)

Reactive Messaging supports various forms of method signatures. This is detailed in the next
section.

A method annotated with @Outgoing is a Reactive Streams publisher and so publishes messages
according to the requests it receives. The downstream @Incoming method or outgoing connector
with a matching channel name will be linked to this publisher. Only a single method can be
annotated with @Outgoing for a particular channel name. Having the same channel name in more
than one @Outgoing annotated method is not supported and will result in an error during
deployment.

Method consuming and producing

A method can combine the @Incoming and @Outgoing annotation and will then act as a Reactive
Streams processor:

@Incoming("my-incoming-channel") ①
@Outgoing("my-outgoing-channel") ②
public Message<String> process(Message<String> message) {
 return message.withPayload(message.getPayload().toUpperCase()); ③
}

1. The incoming channel

2. The outgoing channel

3. Use the withPayload method to preserve the ack and nack functions

Having the same channel appear in the @Outgoing and @Incoming annotations of a processor is not
supported and will result in an error during deployment.

Connectors

The application can receive and forward messages from various message brokers or transport
layers. For instance, an application can be connected to a Kafka cluster, an AMQP broker or an
MQTT server.

Reactive Messaging Connectors are extensions managing the communication with a specific
transport technology. They are responsible for mapping a specific channel to remote sink or source

10

of messages. This mapping is configured in the application configuration. Note that an
implementation may provide various ways to configure the mapping, but support for MicroProfile
Config as a configuration source is mandatory.

Connector implementations are associated with a name corresponding to a messaging transport,
such as Apache Kafka, Amazon Kinesis, RabbitMQ or Apache ActiveMQ. For instance, an
hypothetical Kafka connector could be associated with the following name: acme.kafka. This name is
indicated using a qualifier on the connector implementation.

The user can associate a channel with this connector using the associated name:

mp.messaging.incoming.my-kafka-topic.connector=acme.kafka ①

1. the name associated with the connector.

The configuration format is detailed later in this document.

The Reactive Messaging implementation is responsible for finding the connector implementation
associated with the given name in the user configuration. If the connector cannot be found, the
deployment of the application must be failed.

The Reactive Messaging specification provides an SPI to implement connectors.

Message stream operation
Message stream operation occurs according to the principles of reactive programming. The back
pressure mechanism of reactive streams means that a publisher will not send data to a subscriber
unless there are outstanding subscriber requests. This implies that data flow along the stream is
enabled by the first request for data received by the publisher. For methods that are annotated with
@Incoming and @Outgoing this data flow control is handled automatically by the underlying system
which will call the @Incoming and @Outgoing methods as appropriate.

Although @Incoming and @Outgoing methods remain callable from Java code, calling
them directly will not affect the reactive streams they are associated with. For
example, calling an @Outgoing annotated method from user code will not post a
message on a message queue and calling an @Incoming method cannot be used to
read a message. Enabling this would bypass the automatic back pressure
mechanism that is one of the benefits of the specification. The @Incoming and
@Outgoing method annotations are used to declaratively define the stream which is
then run by the implementation of MicroProfile Reactive Messaging without the
user’s code needing to handle concerns such as subscriptions or flow control
within the stream.

Supported CDI scopes
Implementations of the Reactive Messaging specification must support at least the following CDI
scopes:

11

• @ApplicationScoped beans

• @Dependent beans

The following code gives an example of a bean annotated with @ApplicationScoped:

@ApplicationScoped
public class ApplicationScopeBeans {

 @Outgoing("source")
 public Publisher<Integer> source() {
 return ReactiveStreams.of(id).buildRs();
 }

 @Incoming("source")
 @Outgoing("output")
 public int process(int i) {
 return i + 1;
 }

 @Incoming("output")
 public void sink(int v) {
 System.out.println(v);
 }
}

Implementations can provide support for other scopes. However the behavior is not defined.

Supported method signatures
The signature of message stream methods can have a number of different distinct types, offering
differing levels of power and simplicity to application developers. Different shapes are supported
depending on whether the method is a publisher, subscriber or processor, for example, a
publishing stream supports returning MicroProfile Reactive Streams PublisherBuilder, but not
SubscriberBuilder, the inverse is true for a subscribing stream.

This section lists the methods signatures that must be supported by the Reactive Messaging
implementation. Implementations must validate that the stream shape matches the @Outgoing and
@Incoming annotations, if they don’t, a CDI definition exception should be raised to the CDI container
during initialization.

It’s important to remember that users must not call these methods directly. They are invoked by the
Reactive Messaging implementation following the Reactive Streams protocol.

Also the method must be implemented in a non-blocking fashion. For blocking transformations,
asynchronous variants can be used.

12

assembly time is when the Reactive Messaging implementation initializes itself and
creates the different bean instances and connects them together. If the
implementation cannot find a incoming of outgoing channel, a DeploymentException
must be thrown when the application starts.

 In the following lists, Message can be an implementation of the Message interface.

Methods producing data

Signature Behavior Invocation

@Outgoing("name")
Publisher<Message<O>> method()

Returns a stream of
Message associated with
the channel name.

Method called once at
assembly time.

@Outgoing("channel")
Publisher<O> method()

Returns a stream of
payload of type O
associated with the
channel channel.
Produced payloads are
mapped to Message<O>
by the Reactive
Messaging
implementation.

Method called once at
assembly time.

@Outgoing("channel")
PublisherBuilder<Message<O>> method()

Returns a stream of
Message associated with
the channel channel.

Method called once at
assembly time.

@Outgoing("channel")
PublisherBuilder<O> method()

Returns a stream of
payload associated with
the channel channel.
Produced payloads are
mapped to Message<O>
by the Reactive
Messaging
implementation.

Method called once at
subscription time.

@Outgoing("channel")
Message<O> method()

Produces an infinite
stream of Message
associated with the
channel channel.

This method is called
for each request made
by the subscriber.

13

Signature Behavior Invocation

@Outgoing("channel")
O method()

Produces an infinite
stream of payload
associated with the
channel channel.
Produced payloads are
mapped to Message<O>
by the Reactive
Messaging
implementation.

This method is called
for each request made
by the subscriber.

@Outgoing("channel")
CompletionStage<Message<O>> method()

Produces an infinite
stream of Message
associated with the
channel channel. The
result is a
CompletionStage. The
method should not be
called by the reactive
messaging
implementation until
the CompletionStage
returned previously is
completed.

This method is called
for each request made
by the subscriber.

@Outgoing("channel")
CompletionStage<O> method()

Produces an infinite
stream of payload
associated with the
channel channel.
Produced payloads are
mapped to Message<O>
by the Reactive
Messaging
implementation. The
result is a
CompletionStage. The
method should not be
called by the reactive
messaging
implementation until
the CompletionStage
returned previously is
completed.

This method is called
for each request made
by the subscriber.

Methods consuming data

14

Signature Behavior Invocation

@Incoming("channel")
Subscriber<Message<I>> method()

Returns a Subscriber
that receives the
Message objects
transiting on the
channel channel.

The method is called
only once to retrieve
the Subscriber object at
assembly time. This
subscriber is connected
to the matching
channel.

@Incoming("channel")
Subscriber<I> method()

Returns a Subscriber
that receives the
payload objects
transiting on the
channel channel. The
payload is
automatically extracted
from the inflight
messages using
Message.getPayload().

The method is called
only once to retrieve
the Subscriber object at
assembly time. This
subscriber is connected
to the matching
channel.

@Incoming("channel")
SubscriberBuilder<Message<I>, Void>
method()

Returns a
SubscriberBuilder that
receives the Message
objects transiting on
the channel channel.

The method is called
only once at assembly
time to retrieve a
SubscriberBuilder that
is used to build a
CompletionSubscriber
that is subscribed to the
matching channel.

@Incoming("channel")
SubscriberBuilder<I, Void> method()

Returns a
SubscriberBuilder that
is used to build a
CompletionSubscriber<I
>` that receives the
payload of each Message.
The payload is
automatically extracted
from the inflight
messages using
Message.getPayload().

The method is called
only once at assembly
time to retrieve a
SubscriberBuilder that
is used to build a
CompletionSubscriber
that is subscribed to the
matching channel.

15

Signature Behavior Invocation

@Incoming("channel")
void method(I payload)

Consumes the payload. This method is called
for every Message<I>
instance transiting on
the channel channel.
The payload is
automatically extracted
from the inflight
messages using
Message.getPayload().
The user method is
never called
concurrently and so
must return before
being called with the
next payload.

@Incoming("channel")
CompletionStage<Void> method(Message<I>
msg)

Consumes the Message This method is called
for every Message<I>
instance transiting on
the channel channel.
The user method is
never called
concurrently. The
reactive messaging
implementation must
wait until the
completion of the
previously returned
CompletionStage before
calling the method
again with the next
Message. Note that
@Incoming("channel")
void method(Message<I>
msg) is not allowed as
message
acknowledgement is
asynchronous.

16

Signature Behavior Invocation

@Incoming("channel")
CompletionStage<?> method(I payload)

Consumes the payload
asynchronously

This method is called
for every Message<I>
instance transiting on
the channel channel.
The payload is
automatically extracted
from the inflight
messages using
Message.getPayload().
The user method is
never called
concurrently. The
reactive messaging
implementation must
wait until the
completion of the
previously returned
CompletionStage before
calling the method
again with the next
payload.

Methods processing data

Signature Behavior Invocation

@Incoming("in")
@Outgoing("out")
Processor<Message<I>, Message<O>>
method()

Returns a Reactive
Streams processor
consuming incoming
Message instances and
produces Message
instances.

This method is called
once; at assembly time.

@Incoming("in")
@Outgoing("out")
Processor<I, O> method();

Returns a Reactive
Streams processor
consuming incoming
payload instances and
produces payload
instances.

This method is called
once; at assembly time.

@Incoming("in")
@Outgoing("out")
ProcessorBuilder<Message<I>, Message<O>>
method();

Returns a
ProcessorBuilder
consuming incoming
Message instances and
produces Message
instances.

This method is called
once; at assembly time.

17

Signature Behavior Invocation

@Incoming("in")
@Outgoing("out")
ProcessorBuilder<I, O> method();

Returns a Reactive
Streams processor that
consuming incoming
payload instances and
produces payload
instances.

This method is called
once; at assembly time.

@Incoming("in")
@Outgoing("out")
Publisher<Message<O>> method(Message<I>
msg)

Returns a Reactive
Streams Publisher for
each incoming Message.
The returned Publisher
can be empty or emits
multiple Message
instances. If the
returned Publisher
emits several elements,
these elements are
flattened in the
outgoing stream as a
concatenation of
elements. The flattening
follows the same
semantics as the
flatMap operator from
the MicroProfile
Reactive Streams
specification.

This method is called
for every incoming
message.
Implementations must
not call the method
subsequently until the
stream from the
previously returned
Publisher is completed.

18

Signature Behavior Invocation

@Incoming("in")
@Outgoing("out")
Publisher<O> method(I payload)

Returns a Reactive
Streams Publisher for
each incoming payload.
The returned Publisher
can be empty or emits
multiple payload
instances. If the
returned Publisher
emits several elements,
these elements are
flattened in the
outgoing stream as a
concatenation of
elements. The flattening
follows the same
semantics as the
flatMap operator from
the MicroProfile
Reactive Streams
specification. The
Reactive Messaging
implementation must
create new Message
instances for each
emitted payload as well
as extracing the
payload for each
incoming Message.

This method is called
for every incoming
message.
Implementations must
not call the method
subsequently until the
stream from the
previously returned
Publisher is completed.

19

Signature Behavior Invocation

@Incoming("in")
@Outgoing("out")
PublisherBuilder<Message<O>> method
(Message<I> msg)

Returns a
PublisherBuilder for
each incoming Message.
The stream resulting
from the built Publisher
can be empty or emits
multiple Message
instances. If the stream
emitted from the built
Publisher emits several
elements, these
elements are flattened
in the outgoing stream
as a concatenation of
elements. The flattening
follows the same
semantics as the
flatMap operator from
the MicroProfile
Reactive Streams
specification.

This method is called
for every incoming
message.
Implementations must
not call the method
subsequently until the
stream built from the
previously returned
PublisherBuilder is
completed.

20

Signature Behavior Invocation

@Incoming("in")
@Outgoing("out")
PublisherBuilder<O> method(I payload)

Returns a
PublisherBuilder for
each incoming payload.
The stream resulting
from the built Publisher
can be can be empty or
emits multiple payload
instances. If the stream
emitted from the built
Publisher emits several
elements, these
elements are flattened
in the outgoing stream
as a concatenation of
elements. The flattening
follows the same
semantics as the
flatMap operator from
the MicroProfile
Reactive Streams
specification. The
Reactive Messaging
implementation must
create new Message
instances for each
emitted payload as well
as extracing the
payload for each
incoming Message.

This method is called
for every incoming
message.
Implementations must
not call the method
subsequently until the
stream built from the
previously returned
PublisherBuilder is
completed.

@Incoming("in")
@Outgoing("out")
Message<O> method(Message<I> msg)

Returns a Message for
each incoming Message.

This method is called
for every incoming
message.
Implementations must
not call the method
subsequently until the
previous call must have
returned.

21

Signature Behavior Invocation

@Incoming("in")
@Outgoing("out")
O method(I payload)

Returns a payload for
each incoming payload.
The Reactive Messaging
implementation is
responsible for
unwrapping the
_payload from the
incoming Message and
creating a Message from
the returned payload.

This method is called
for every incoming
message.
Implementations must
not call the method
subsequently until the
previous call must have
returned.

@Incoming("in")
@Outgoing("out")
CompletionStage<Message<O>> method
(Message<I> msg)

Produces a Message for
each incoming Message.
This method returns a
CompletionStage that
can redeem the Message
instance
asynchronously. The
returned
CompletionStage must
not be completed with
null.

This method is called
for every incoming
message. Never
concurrently. The
implementations must
wait until the
completion of the
previously returned
CompletionStage before
calling the method
again with the next
Message.

@Incoming("in")
@Outgoing("out")
CompletionStage<O> method(I payload)

Produces a payload for
each incoming payload.
This method returns a
CompletionStage that
can redeem the payload
instance
asynchronously. The
returned
CompletionStage must
not be completed with
null.

This method is called
for every incoming
payload. Never
concurrently. The
implementations must
wait until the
completion of the
previously returned
CompletionStage before
calling the method
again with the next
payload.

@Incoming("in")
@Outgoing("out")
Publisher<Message<O>> method(Publisher
<Message<I>> pub)

Applies a
transformation to the
incoming stream of
Message. This method is
used to manipulate
streams and apply
stream
transformations.

This method is called
once, at assembly time.

22

Signature Behavior Invocation

@Incoming("in")
@Outgoing("out")
PublisherBuilder<Message<O>> method
(PublisherBuilder<Message<I>> pub)

Applies a
transformation to the
stream represented by
the PublisherBuilder of
Message. This method is
used to manipulate
streams and apply
stream
transformations.

This method is called
once, at assembly time.

@Incoming("in")
@Outgoing("out")
Publisher<O> method(Publisher<I> pub)

Applies a
transformation to the
incoming streams of
payloads. This method
is used to manipulate
streams and apply
stream
transformations.

This method is called
once, at assembly time.

@Incoming("in")
@Outgoing("out")
PublisherBuilder<O> method
(PublisherBuilder<I> pub)

Applies a
transformation to the
stream represented by
the PublisherBuilder of
payloads. This method
is used to manipulate
streams and apply
stream
transformations.

This method is called
once, at assembly time.

Examples of simple method streams

The simplest shape that an application may use is a simple method. This is a method that accepts an
incoming message, and possibly publishes an outgoing message:

@Incoming("in")
@Outgoing("out")
public Message<O> process(Message<I> msg) {
 return convert(msg);
}

In the above example, the stream is both a publishing and subscribing stream, with a 1:1 mapping
of incoming to outgoing messages. Asynchronous processing may also be used, by returning a
CompletionStage:

23

@Incoming("in")
@Outgoing("out")
public CompletionStage<Message<O>> process(Message<I> msg) {
 return asyncConvert(msg);
}

If the method is not @Outgoing annotated, then the returned value is ignored - however, note that for
asynchronous methods, the returned CompletionStage is still important for determining when
message processing has completed successfully, for the purposes of message acknowledgement.
When there is no @Outgoing annotation, void may also be returned.

In addition to Message, implementations must allow:

• payloads (the content wrapped in a Message)

• implementation of the Message interface

Examples of methods using Reactive Streams or MicroProfile Reactive
Streams Operators types

For more power, developers may use Reactive Streams instances. Reactive Streams shaped methods
accept no parameters, and return one of the following:

• org.eclipse.microprofile.reactive.streams.operators.PublisherBuilder

• org.eclipse.microprofile.reactive.streams.operators.SubscriberBuilder

• org.eclipse.microprofile.reactive.streams.operators.ProcessorBuilder

• org.reactivestreams.Publisher

• org.reactivestreams.Subscriber

• org.reactivestreams.Processor

Implementations may optionally support other types, such as JDK9 Flow publishers, subscribers
and processors, or other representations of Reactive Streams. Application developers are
recommended to use the MicroProfile Reactive Streams Operators builders in order to allow for the
highest level of portability.

For example, here’s a message processor:

@Incoming("in")
@Outgoing("out")
public PublisherBuilder<Message<I>, Message<O>> process() {
 return ReactiveStreams.<Message<I>>builder()
 .map(this::convert);
}

 Implementations must support implementations of the Message interface.

24

Message acknowledgement and negative
acknowledgement
Acknowledgement is an important part of message processing. Acknowlegement indicates that a
message has been processed correctly. A negative-acknoledgement indicates that a message was not
processed correctly.

Messages are either acknowledged (positively or negatively) explicitly, or implicitly by the
implementation.

All messages must be acknowledged either positively or negatively. What happens when a message
is acknowledged depends on the source of the message, often on the connector.

Positive acknowledgement
Acknowledgement for the @Incoming messages is controlled by the
org.eclipse.microprofile.reactive.messaging.Acknowledgment annotation. The annotation allows
configuring the acknowledgement strategy among:

• MANUAL - the user is responsible for the acknowledgement, by calling the Message#ack() method,
so the Reactive Messaging implementation does not apply implicit acknowledgement

• PRE_PROCESSING - the Reactive Messaging implementation acknowledges the message before the
annotated method or processing is executed

• POST_PROCESSING - the Reactive Messaging implementation acknowledges the message once:

1. the method or processing completes if the method does not emit data

2. when the emitted data is acknowledged

Each method signature type has different defaults and can implement different acknowledgement
policies. If the Acknowledgment annotation is not set, the default policy is applied.

Method only annotated with @Outgoing do not support acknowledgement as they
don’t receive an input Message.

When a method annotated with @Incoming defines its acknowledgement policy to be PRE_PROCESSING
or POST_PROCESSING, the Reactive Messaging implementation is responsible for the
acknowledgement of the message. When the POST_PROCESSING policy is used, the incoming message
is acknowledged when the outgoing message is acknowledged. Thus, it creates a chain of
acknowledgements, making sure that the messages produced by an IncomingConnectorFactory are
only acknowledged when the dispatching of the messages has been completed successfully.

The MANUAL strategy indicates that the incoming message acknowledgement is managed by the user
code. The MANUAL strategy is often used to acknowledge incoming messages when the produced
messages are acknowledged. For example, in the next snippet, the received KafkaMessage is
acknowledged when the produced message is acknowledged.

25

@Incoming("data")
@Outgoing("sink")
@Acknowledgment(Acknowledgment.Strategy.MANUAL)
public Message<Integer> process(KafkaMessage<String, Integer> input) {
 return Message.of(processThePayload(input.getPayload(), () -> input.ack()));
}

Specifying NONE as acknowledgment strategy allows for this method to complete processing and
return without handling acknowledgment and for this to be considered valid behavior of the
method. However, if messages were never acknowledged this would result in a build-up of
unacknowledged messages in the system as no automatic acknowledgment will be done when NONE
is specified. When 'NONE' is specified, each message object’s ack() method should still be invoked
once as part of the overall processing but this is considered valid behavior either before, during, or
after this method’s execution.

The following table indicates the defaults and supported acknowledgement for each supported
signature:

Signature Default
Acknowledgement
Strategy

Supported Strategies

@Incoming("channel")
Subscriber<Message<I>> method()

Manual None, Pre-Processing,
Post-Processing (when
the onNext method
returns), Manual

@Incoming("channel")
Subscriber<I> method()

Post-Processing None, Pre-Processing,
Post-Processing (when
the onNext method
returns)

@Incoming("channel")
SubscriberBuilder<Message<I>, Void>
method()

Manual None, Pre-Processing,
Post-Processing (when
the onNext method
returns), Manual

@Incoming("channel")
SubscriberBuilder<I, Void> method()

Post-Processing None, Pre-Processing,
Post-Processing (when
the onNext method
returns)

@Incoming("channel")
void method(I payload)

Post-Processing None, Pre-Processing,
Post-Processing (when
the method returns)

26

Signature Default
Acknowledgement
Strategy

Supported Strategies

@Incoming("channel")
CompletionStage<?> method(Message<I>
msg)

Manual None, Pre-Processing,
Post-Processing (when
the returned
CompletionStage is
completed), Manual

@Incoming("channel")
CompletionStage<?> method(I payload)

Post-Processing None, Pre-Processing,
Post-Processing (when
the returned
CompletionStage is
completed)

@Incoming("in")
@Outgoing("out")
Processor<Message<I>, Message<O>>
method()

Manual None, Pre-Processing,
Manual

@Incoming("in")
@Outgoing("out")
Processor<I, O> method();

Pre-Processing None, Pre-Processing
Post-Processing can be
optionally supported by
implementations,
however it requires a
1:1 mapping between
the incoming element
and the outgoing
element.

@Incoming("in")
@Outgoing("out")
ProcessorBuilder<Message<I>, Message<O>>
method();

Manual None, Pre-Processing,
Manual

@Incoming("in")
@Outgoing("out")
ProcessorBuilder<I, O> method();

Pre-Processing None, Pre-Processing
Post-Processing can be
optionally supported by
implementations,
however it requires a
1:1 mapping the
incoming element and
the outgoing element.

27

Signature Default
Acknowledgement
Strategy

Supported Strategies

@Incoming("in")
@Outgoing("out")
Publisher<Message<O>> method(Message<I>
msg)

Manual None, Manual, Pre-
Processing

@Incoming("in")
@Outgoing("out")
Publisher<O> method(I payload)

Pre-Processing None, Pre-Processing

@Incoming("in")
@Outgoing("out")
PublisherBuilder<Message<O>> method
(Message<I> msg)

Manual None, Manual, Pre-
Processing

@Incoming("in")
@Outgoing("out")
PublisherBuilder<O> method(I payload)

Pre-Processing None, Pre-Processing

@Incoming("in")
@Outgoing("out")
Message<O> method(Message<I> msg)

Manual None, Manual, Pre-
Processing

@Incoming("in")
@Outgoing("out")
O method(I payload)

Post-Processing None, Pre-Processing,
Post-Processing (when
the message wrapping
the produced payload is
acknowledged)

@Incoming("in")
@Outgoing("out")
CompletionStage<Message<O>> method
(Message<I> msg)

Manual None, Manual, Pre-
Processing

28

Signature Default
Acknowledgement
Strategy

Supported Strategies

@Incoming("in")
@Outgoing("out")
CompletionStage<O> method(I payload)

Post-Processing None, Pre-Processing,
Post-Processing (when
the message wrapping
the produced payload is
acknowledged)

@Incoming("in")
@Outgoing("out")
Publisher<Message<O>> method(Publisher
<Message<I>> pub)

Manual None, Manual, Pre-
Processing

@Incoming("in")
@Outgoing("out")
PublisherBuilder<Message<O>> method
(PublisherBuilder<Message<I>> pub)

Manual None, Manual, Pre-
Processing

@Incoming("in")
@Outgoing("out")
Publisher<O> method(Publisher<I> pub)

Pre-Processing None, Pre-Processing

@Incoming("in")
@Outgoing("out")
PublisherBuilder<O> method
(PublisherBuilder<I> pub)

Pre-Processing None, Pre-Processing

Invalid acknowledgement policies must be detected and a DeploymentException raised when the
application is deployed.

Acknowledgement Examples

Transiting data may be wrapped in a Message, which can be used to supply metadata, and also
allows messages to be acknowledged. The contract for acknowledging messages is anything that
accepts a Message is required to acknowledge it. So, if the application receives an incoming message
wrapped in Message, it is responsible for invoking Message.ack(), and if the application publish an
outgoing message wrapped in Message, then the spec implementation is responsible for invoking
Message.ack().

For example, the following application code is incorrect, since it accepts a message wrapped in
Message, but does not acknowledge the messages:

29

@Incoming("in")
@Acknowledgment(Acknowledgment.Strategy.MANUAL)
public void process(Message<I> msg) {
 System.out.println("Got message " + msg.getPayload());
}

Here is a correct implementation:

@Incoming("in")
@Acknowledgment(Acknowledgment.Strategy.MANUAL)
public CompletionStage<Void> process(Message<I> msg) {
 System.out.println("Got message " + msg.getPayload());
 return msg.ack();
}

This implementation is also correct, since the application receives a payload wrapped in a message.
It’s the implementations responsibility to invoke ack() on the incoming message:

@Incoming("in")
public void process(I payload) {
 System.out.println("Got payload " + payload);
}

When dealing with payloads, the POST_PROCESSING strategy is the default strategy. In the following
snippet, the incoming payload is transported into a message and unwrapped before calling the
method. The produced result is wrapped into another Message. Following the POST_PROCESSING
strategy, the incoming message must only be acknowledged when the output message is
acknowledged. The implementation is responsible to chain the acknowledgements.

@Incoming("in")
@Outgoing("out")
public O process(I payload) {
 ...
}

The acknowledgment strategy can be changed. For instance, using the PRE_PROCESSING strategy, the
incoming message is acknowledged before the method is called. It also means that the
acknowledgment of the outgoing message would not acknowledge the incoming message anymore,
as it’s already acknowledged.

30

@Incoming("in")
@Outgoing("out")
@Acknowledgment(Acknowledgment.Strategy.PRE_PROCESSING)
public O process(I payload) {
 ...
}

PRE_PROCESSING can also be used with Messages:

@Incoming("in")
@Outgoing("out")
@Acknowledgment(Acknowledgment.Strategy.PRE_PROCESSING)
public Message<O> process(Message<I> msg) {
 return Message.of(convert(msg.getPayload()));
}

In this case, the message msg is acknowledged before the method being called. The outgoing
message (returned by the method) does not have to chain the acknowledgment.

The NONE strategy indicates that the incoming message is not acknowledged and the
acknowledgment of the outgoing message would not acknowledge the incoming message anymore.
The NONE strategy may be used when the incoming messages are acknowledged in another location,
or a different mechanism..

@Incoming("in")
@Outgoing("out")
@Acknowledgment(Acknowledgment.Strategy.NONE)
public O process(I payload) {
 ...
}

The MANUAL strategy indicates that the acknowledgment is managed by the user code. The following
snippet is particularly useful for processing messages that are also being sent to a destination, as
the implementation must not invoke ack until after the outgoing message has been sent to the
destination:

@Incoming("in")
@Outgoing("out")
@Acknowledgment(Acknowledgment.Strategy.MANUAL) // Default strategy
public Message<O> process(Message<I> msg) {
 return Message.of(convert(msg.getPayload()), msg::ack);
}

The implementation is responsible for enforcing the acknowledgement strategy defined by the user
when the @Acknowledgement policy is used. If the annotation is not used, the default policy must be

31

enforced.

Negative acknowledgement
Negative acknowledgement indicates a processing failure. As for the POST_PROCESSING positive
acknowledgement strategy, a nack is propagated from a message to its source if the messages are
chained. When the nack reaches the top of the chain, the source, generally a connector, can handle
the failure and act accordingly. Typically, sending the invalid message to a dead-letter-queue or
retrying the delivery are common strategies.

Negative acknowledgement happens automatically if a method annotated with @Incoming receives a
single payload and uses POST_PROCESSING acknowledgement and throws an exception. The incoming
message is nacked and the thrown exception is passed as reason. The following method would
automatically trigger a nack if the incoming payload is b:

@Incoming("data")
@Outgoing("out")
public String process(String s) { ①
 if (s.equalsIgnoreCase("b")) {
 throw new IllegalArgumentException("b"); ②
 }
 return s.toUpperCase();
}

1. POST_PROCESSING is the default strategy for this signature

2. throwing an exception nacks the incoming message

If a method handles payload asynchronously (returns a CompletionStage), the incoming message is
nacked if:

• the method throws an exception

• the produced CompletionStage is completed exceptionally

32

@Incoming("data")
@Outgoing("out")
public CompletionStage<String> process(String s) { ①
 if (s.equalsIgnoreCase("b")) {
 throw new IllegalArgumentException("b"); ②
 }

 if (s.equalsIgnoreCase("f")) {
 return null; ③
 }

 if (s.equalsIgnoreCase("c")) {
 CompletableFuture<String> cf = new CompletableFuture<>();
 cf.completeExceptionally(new IllegalArgumentException("c")); ④
 return cf;
 }
 return CompletableFuture.completedFuture(s.toUpperCase());
}

1. POST_PROCESSING is the default strategy for this signature

2. throwing an exception nacks the incoming message

3. returning null nacks the incoming message, as it’s illegal to return null as CompletionStage

4. returning a CompletionStage failed exceptionally also nacks the incoming message

If the method receives a single Message, the user is responsible for calling the nack function:

@Incoming("data")
@Outgoing("out")
public Message<String> process(Message<String> m) { ①
 String s = m.getPayload();
 if (s.equalsIgnoreCase("b")) {
 // we cannot fail, we must nack explicitly.
 m.nack(new IllegalArgumentException("b")); ②
 return null;
 }
 return m.withPayload(s.toUpperCase());
}

1. MANUAL is the default strategy for this signature

2. throwing an exception would not nack the message, as it may have already been explicitly acked
or nacked. Before the exception happens, the user must call the nack method.

Methods using the NONE acknowledgement strategy do not nack the incoming message. Methods
using the PRE_PROCESSING acknowledgement strategy, the incoming message is not nacked either, as
it was already acknowledged.

33

Connector
Reactive Messaging connects matching @Incoming and @Outgoing stream elements running inside the
same application. Additionally, it maps specific channels to external technologies such as Apache
Kafka, MQTT, Web Sockets, AMQP, or JMS. This means that Reactive Messaging can receive
messages from virtually any messaging technology and dispatch messages to any messaging
technology. This bridging to an external messaging technology is done using a reactive messaging
connector.

Connector concepts

Each connector is responsible for a specific technology. A connector can:

• act as a Publisher, meaning it retrieves or receives messages from an external messaging
technology and publishes them to a reactive stream. The messages will then be sent to a method
annotated with @Incoming.

• act as a Subscriber, meaning it subscribes to a reactive stream and dispatches messages to an
external messaging technology. The messages are received from a method annotated with
@Outgoing.

• handle both directions.

It’s essential that connectors implement the back-pressure protocol defined by the Reactive Streams
specification.

A connector is implemented as a CDI Bean, generally application scoped implementing:

• the org.eclipse.microprofile.reactive.messaging.connector.IncomingConnectorFactory interface
to receive messages from an external source;

• the org.eclipse.microprofile.reactive.messaging.connector.OutgoingConnectorFactory interface
to dispatch messages to an external sink

Depending on the integrated technology, the connector can implement one of the
interface or both.

The bean is a factory called by the Reactive Messaging implementation to create PublisherBuilder
or SubscriberBuilder objects. These objects are then connected to methods annotated with @Incoming
or @Outgoing.

Beans implementing the IncomingConnectorFactory or OutgoingConnectorFactory must use the
org.eclipse.microprofile.reactive.messaging.spi.Connector qualifier. This qualifier defined the
name associated with the connector.

The @Connector qualifier is used as follows:

34

package org.eclipse.reactive.sample.kafka;

import org.eclipse.microprofile.reactive.messaging.spi.*;

@ApplicationScoped
@Connector("acme.kafka")
public class KafkaConnector implements IncomingConnectorFactory,
OutgoingConnectorFactory {
 // ...
}

Once defined, the user can, in the configuration, refer to this connector using the given name
(acme.kafka in this example). When the Reactive Messaging implementation processes the
configuration, it determines the connector to be used based on the connector attribute.

Configuration

Reactive Messaging connectors are configured using MicroProfile Config. The implementation
processes the global configuration and determines:

• which channels are defined

• which connectors are used (using the connector) attribute

• the configuration for each channel

The builder methods defined in the IncomingConnectorFactory and OutgoingConnectorFactory receive
a org.eclipse.microprofile.config.Config as parameter. The Config object contains key-value pairs
to configure the connector. The configuration is specific to the connector. For example, a Kafka
connector expects a bootstrap.servers entry as well as a topic entry.

The Reactive Messaging implementation reads the global application configuration and must
support the following format:

• mp.messaging.incoming.[channel-name].[attribute]=[value]

• mp.messaging.outgoing.[channel-name].[attribute]=[value]

• mp.messaging.connector.[connector-name].[attribute]=[value]

For each extracted channel-name:

1. The connector attribute of the channel is read, and the connector implementation identified. If
no loadable connector implementation matches, the deployment must be failed with a
DeploymentException;

2. Relevant attributes are those matching either the channel-name or the resolved connector-name.

3. Relevant attributes are processed to generate a Config object containing only attribute=value
entries. If is valid to have an attribute specified at a connector level and also for a specific
channel. If an attribute appears for both a channel and its relevant connector, the channel
specific value will be used. In the example below, the acme.kafka default value for
bootstrap.servers is overridden for my-channel to be 9096.

35

The following snippet gives an example for a hypothetical Kafka connector:

 mp.messaging.incoming.my-channel.connector=acme.kafka
 mp.messaging.incoming.my-channel.bootstrap.servers=localhost:9096
 mp.messaging.incoming.my-channel.topic=my-topic
 mp.messaging.connector.acme.kafka.bootstrap.servers=localhost:9092

For properties that have a mp.messaging.incoming. or mp.messaging.outgoing prefix, this prefix is
stripped off the property name and the remainder of the property name up to the first occurrence
of . is treated as the channel name. Channel names may not include the . character.

For properties that have a mp.messaging.connector. prefix, this prefix is stripped off the property
name and the longest remaining prefix that matches any configured connector is treated as a
connector name. The remainder of the property name, minus the expected initial . separator, is
taken as the name of an attribute for this connector. For example bootstrap.servers appears as a
default attribute for all channels that use the acme.kafka connector.

The Reactive Messaging implementation:

1. Reads the configuration

2. Identifies that a my-channel source needs to be managed

3. Searches for the connector attribute and finds acme.kafka

4. Looks for a bean implementing the IncomingConnectorFactory interface qualified with
@Connector("acme.kafka"). If the configuration had contained a mp.messaging.outgoing.my-
channel… entry, a bean implementing the OutgoingConnectorFactory interface would have been
searched for.

5. Creates a new Config object with just the relevant key=value pairs:

bootstrap.servers=localhost:9096
topic=my-topic

6. Calls the PublisherBuilder<? extends Message> getPublisherBuilder(Config config) method with
the created Config object. If the configuration is invalid, the connector can throw:

◦ a NoSuchElementException if a mandatory attribute is missing in the configuration

◦ an IllegalArgumentException if the initialization of the connector fails for any other reasons.

The Reactive Messaging implementation catches these exceptions and wraps them into a
DeploymentException, failing the deployment of the application.

7. The built PublisherBuilder is connected to a method using the @Incoming("my-stream")
annotation. The implementation of the connector must map every received message to an
org.eclipse.microprofile.reactive.messaging.Message. Optionally, it can provide its own
implementation of org.eclipse.microprofile.reactive.messaging.Message providing additional
metadata.

36

The configuration passed to the IncomingConnectorFactory and OutgoingConnectorFactory contains at
least the:

• channel-name attribute indicating the name of the channel being configured,

• connector attribute must match the name given to the @Connector qualifier.

Connector attribute

To help tools (IDEs, documentation generator) to extract the configuration of each connector, the
specification provides the org.eclipse.microprofile.reactive.messaging.spi.ConnectorAttribute
annotation for implementations to create a good ecosystem with the tools. However, the support for
this SPI is not mandatory.

When used, each attribute supported by the connector should be documented using this
annotation. The following snippet provides an example of a connector using the annotation:

@ConnectorAttribute(name = "bootstrap.servers", alias = "kafka.bootstrap.servers",
type = "string",
 defaultValue = "localhost:9092", direction = Direction.INCOMING_AND_OUTGOING,
 description = "...")
@ConnectorAttribute(name = "topic", type = "string", direction = Direction
.INCOMING_AND_OUTGOING,
 description = "...")
@ConnectorAttribute(name = "value-deserialization-failure-handler", type = "string",
direction = Direction.INCOMING,
 description = "...")
@ConnectorAttribute(name = "merge", direction = OUTGOING, type = "boolean",
defaultValue = "false",
 description = "...")
@Connector("my-connector")
public class MyConnector implements IncomingConnectorFactory,
OutgoingConnectorFactory {
 // ...
}

As a result, tools can extract the supported attributes and improve the user experience.

Acknowledgement

The connector is responsible for the acknowledgment (positive or negative) of the incoming and
outgoing messages:

• An incoming connector must only acknowledge the received message when the produced
org.eclipse.microprofile.reactive.messaging.Message is acknowledged.

• An incoming connector must handle received negative acknowledgment.

• An outgoing connector must acknowledge the incoming
org.eclipse.microprofile.reactive.messaging.Message once it has successfully dispatched the
message.

37

• An outgoing connector must acknowledge negatively the incoming
org.eclipse.microprofile.reactive.messaging.Message if it cannot be dispatched.

38

Metrics
When MicroProfile Reactive Messaging is used in an environment where MicroProfile Metrics is
enabled, the Reactive Messaging implementation automatically produces metrics.

The following metrics are produced for each channel declared by the application and are added to
the base scope.

Name Type Unit Description

mp.messaging.message.count{cha
nnel="<channelname>"}

Counter None The number of messages sent on the
named channel.

39

Injecting a Publisher or PublisherBuilder
You can receive messages from a channel by injecting either a Publisher or PublisherBuilder and
using the @Channel qualifier to specify the channel name:

@ApplicationScoped
public class BeanInjectedWithAPublisherOfPayloads {

 private final Publisher<String> constructor;
 @Inject
 @Channel("hello")
 private Publisher<String> field;

 @Inject
 public BeanInjectedWithAPublisherOfPayloads(@Channel("bonjour") Publisher<String>
constructor) {
 this.constructor = constructor;
 }

 public List<String> consume() {
 return Flowable
 .concat(
 Flowable.fromPublisher(constructor),
 Flowable.fromPublisher(field))
 .toList()
 .blockingGet();
 }

}

You can then inject BeanInjectedWithAPublisherOfPayloads to JAX-RS resources.

The value hello in the above example indicates the name of the channel.

For a payload type X, the following types can be injected:

• Publisher<X>

• PublisherBuilder<X>

• Publisher<Message<X>>

• PublisherBuilder<Message<X>>

40

Publishing messages to a channel from
imperative code
Traditionally, the reactive world and imperative world are separated and operate in parallel.
Reactive Messaging deals with streams of data in the reactive world, while the imperative world is
pretty much point to point and synchronous communication. However, imperative programme
sometimes needs to connect to reactive streams so that responses can be emitted to a destination
service. Bridging the two worlds is very valuable thing to do, so that one microservice can use
technologies from both environments. For an instance, a JAX-RS resource might want to publish
messages to a Reactive Messaging channel. This section is about enabling imperative code to
publish messages to a Reactive Messaging channel, so that it can be consumed by a consumer.

You can inject an Emitter and use it to send either payloads (X) or messages (Message<X>) to a
channel as demonstrated below.

@Inject @Channel("myChannel")
private Emitter<String> emitter;

public void publishMessage() {
 emitter.send("a");
 emitter.send("b");
 emitter.complete();
}

When sending payload, the send method returns a CompletionStage. This CompletionStage is
completed when the emitted message is acknowledged. If the processing of the emitter message
fails, the returned CompletionStage is completed exceptionally.

@Inject
@Channel("foo")
private Emitter<String> emitter;

public void run() {
 emitter.send(Message.of("a"));
 emitter.send(Message.of("b"));
 emitter.send(Message.of("c"));
}

When sending a Message, the send message does not return CompletionStage. However, you can
create a Message configured with custom ack and nack functions.

When injecting an Emitter (e.g. @Inject Emitter<T>), you must specify the target channel name
using the @Channel qualifier. You can then configure how the back pressure is handled via
@OnOverflow annotation, for the situation where emitting messages/payloads faster than the
consumption of the messages.

41

@Inject @Channel("myChannel")
@OnOverflow(value=OnOverflow.Strategy.BUFFER, bufferSize=300)
private Emitter<String> emitter;

public void publishMessage() {
 emitter.send("a");
 emitter.send("b");
 emitter.complete();
}

In the above snippet, the buffer size is set to 300 elements. If @OnOverflow is absent, the buffer
strategy OnOverflow.Strategy.BUFFER will be used.

If the bufferSize is not specified, the size will be the value of the config property
mp.messaging.emitter.default-buffer-size. If the property does not exist, the default value will be
128 elements. If the buffer is full, an error will be propagated.

The value attribute on OnOverflow is shown below:

• OnOverflow.Strategy.BUFFER - use a buffer, whose size will be determined by the value of
bufferSize if set. Otherwise, the size will be the value of the config property
mp.messaging.emitter.default-buffer-size if it exists. Otherwise, 128 will be used. If the buffer is
full, an exception will be thrown from the send method.

• OnOverflow.Strategy.UNBOUNDED_BUFFER - use an unbounded buffer. The application may run out
of memory if values are continually added faster than they are consumed.

• OnOverflow.Stragegy.THROW_EXCEPTION - throws an exception from the send method if the
downstream can’t keep up.

• OnOverflow.Strategy.DROP - drops the most recent value if the downstream can’t keep up. It
means that new value emitted by the emitter are ignored.

• OnOverflow.Strategy.FAIL - propagates a failure in case the downstream can’t keep up. No more
value will be emitted.

• OnOverflow.Strategy.LATEST - keeps only the latest value, dropping any previous value if the
downstream can’t keep up.

• OnOverflow.Strategy.NONE - ignores the back pressure signals letting the downstream consumer
to implement a strategy.

Below are some examples:

42

@Inject
@Channel("myChannel")
@OnOverflow(value = OnOverflow.Strategy.BUFFER) // Buffer strategy using the buffer
size specified by _mp.messaging.emitter.default-buffer-size_ if exists. Otherwise, 128
will be used.
Emitter<String> emitter;

@Inject
@Channel("myChannel") // Buffer strategy will be used. It behaves as if
@OnOverflow(value = OnOverflow.Strategy.BUFFER) is present.
Emitter<String> emitter;

@Inject
@Channel("myChannel")
@OnOverflow(value = OnOverflow.Strategy.DROP) // Drop the most recent values
Emitter<String> emitter;

Since the @Channel("myChannel") is used to produce messages, a consumer with the
@Incoming("myChannel") should be specified to consume the messages transiting on the channel
myChannel.

43

Assembly and validation
When the application starts, the Reactive Messaging implementation:

• connect the methods annotated with @Incoming, @Outgoing, Emitter, @Channel and connectors

• verify the validity of the resulting graph

Implementations must throw a DeploymentException when the application starts for any of the
following conditions:

• A method with @Incoming has no upstream channel

• A method with @Outgoing has no downstream channel

• A method with @Incoming has multiple upstream channels

• A method with @Outgoing has multiple downstream channels

• An Emitter has no downstream channel

• An Emitter has multiple downstream channels

• An injected @Channel has no upstream channel

• An injected @Channel has multiple upstream channels

• The application configures a missing connector

• An incoming connector has no downstream channels

• An incoming connector has multiple downstream channels

• An outgoing connector has no upstream channels

• An outgoing connector has multiple upstream channels

44

Release Notes for MicroProfile Reactive
Messaging 2.0
A full list of changes delivered in the 2.0 release can be found at MicroProfile Reactive Messaging
2.0 Milestone.

Functional Changes
• Add support for unmanaged stream injection using @Inject @Channel(…) (#3)

• Add support for emitters allowing emitting messages from imperative code (#70)

• Add support for metrics (#31)

• Add support for negative acknowledgement (#98)

• Update default acknowledgement strategy when dealing with Message (#97)

• Move metrics to the base scope (#93)

• Assembly validation on application start (#119)

• Add @ConnectorAttribute to allow connector configuration discovery (#94)

• Add negative acknowledgement support (#98])

Incompatible Changes
• Spec dependencies marked as "provided" (#88)

Other Changes
• Update to Jakarta EE8 APIs for MP 4.0 (75)

45

https://github.com/eclipse/microprofile-reactive-messaging/milestone/1?closed=1
https://github.com/eclipse/microprofile-reactive-messaging/milestone/1?closed=1
https://github.com/eclipse/microprofile-reactive-messaging/issues/3
https://github.com/eclipse/microprofile-reactive-messaging/issues/70
https://github.com/eclipse/microprofile-reactive-messaging/issues/31
https://github.com/eclipse/microprofile-reactive-messaging/issues/98
https://github.com/eclipse/microprofile-reactive-messaging/pull/97
https://github.com/eclipse/microprofile-reactive-messaging/issues/93
https://github.com/eclipse/microprofile-reactive-messaging/pull/119
https://github.com/eclipse/microprofile-reactive-messaging/issues/94
https://github.com/eclipse/microprofile-reactive-messaging/issues/98
https://github.com/eclipse/microprofile-reactive-messaging/issues/88
https://github.com/eclipse/microprofile-reactive-messaging/issues/75

	MicroProfile Reactive Messaging Specification
	Table of Contents
	MicroProfile Reactive Messaging
	Copyright
	Eclipse Foundation Specification License
	Disclaimers

	Rationale
	Reactive Systems
	On JMS and Message Driven Beans
	Use cases

	Architecture
	Concepts
	Overall architecture
	Channel
	Message
	Message consumption with @Incoming
	Message production with @Outgoing
	Method consuming and producing

	Connectors

	Message stream operation
	Supported CDI scopes
	Supported method signatures
	Methods producing data
	Methods consuming data
	Methods processing data
	Examples of simple method streams
	Examples of methods using Reactive Streams or MicroProfile Reactive Streams Operators types

	Message acknowledgement and negative acknowledgement
	Positive acknowledgement
	Acknowledgement Examples

	Negative acknowledgement
	Connector
	Connector concepts
	Configuration
	Connector attribute
	Acknowledgement

	Metrics
	Injecting a Publisher or PublisherBuilder
	Publishing messages to a channel from imperative code
	Assembly and validation
	Release Notes for MicroProfile Reactive Messaging 2.0
	Functional Changes
	Incompatible Changes
	Other Changes

