Abinit Band Structure Maker
MANUAL version 1.2

written by Benjamin Tardif

benjamin.tardif@umontreal.ca

questions, bug report and suggestions are welcome !

Purpose :

The purpose of this program is to provide an easy way to rapidly plot band
structures from Abinit output files.

Requirements :

Before using the program, you need to have the python interpreter installed
on your computer as well as the numerical python extension.

python can be downloaded at : http://www.python.org/download
Numeric can be downloaded at : http://sourceforge.net/projects/numpy

How to use the program :

STEP 1 : produce a .dbs file

The first thing to do is to extract datas from an Abinit output file and pro-
duce a .dbs file. (dbs stands for Data for Band Structure). To do so, you must
execute the program and specify the name of the .out file you wish to use. You
can either launch the program alone :

> python AbinitBandStructureMaker.py

and enter the file name when asked, or you can directly enter the file name
in the command line :

> python AbinitBandStructureMaker.py file.out
If more than one dataset is present in your .out file, the program will ask you

to select the dataset(s) for which you wish to extract the k-point coordinates
and associated energy eigenvalues.



To select multiple datasets, enter corresponding numbers separated by com-
mas. You can specify a group of successive datasets by entering two numbers
separated by a minus sign, the two numbers being respectively the number of
the first and the last dataset of the group. For example :

1,3-6,8
means that you want to extract datas from datasets 1,3,4,5,6 and 8.

Once the datasets are entered correctly, the program will extract all the nec-
essary datas and produce a .dbs file. If everything goes well, you'll get the
following message :

> "file.out.dbs" file created successfully

STEP 2 : edit the .dbs file

Now that the .dbs file has been created, you can modify it before plotting the
band structure. Edit the .dbs with the program of your choice. You can edit
the following sections :

GRAPH TITLE:
Enter the title of your graph

NUMBER OF VALENCE BANDS:
Enter the number of valence bands in your system, which is the same as the
number of the HOMO (Higher Occupied Molecular Orbital) band.

FERMI ENERGY (eV):

Enter the fermi energy, in eV. A dotted line will be placed on your graph at the
fermi level. If you don’t know the fermi energy of your system, write the word
automatic instead of a number. In that case, the fermi energy will take the
value of the highest energy eigenvalue present in the HOMO band.

SPECIAL K-POINTS (reduced coord):

In this section, you must write a list of all special k-points used to plot the
graph. Special k-points are k-points situated at each end of k-directions along
which you want to calculate the band structure. Special k-points usually corre-
sponds to the vertices of the Brillouin zone. Each line in this section contains
the caption and the reduced coordinates of the k-point. For example :

{sG}= 0.0000 0.0000 0.0000

represents the gamma point. The reduced coordinates are to be multiplied



by the reciprocal vectors to give the position of the k-point in the Brillouin
zone. The caption of the k-point, written between braces, determines the letter
or the symbol that will be plotted on the graph to represent this k-point.

All captions in the .dbs file are of the form : {xx}
The first letter can be either "1" (for letter) or "s" (for symbol).
The second letter can be any alphabet letter (lower of upper case).

For example:

The caption {sG} will be represented on the graph by :
The caption {sg} will be represented on the graph by :
The caption {1X} will be represented on the graph by :
The caption {1x} will be represented on the graph by :

Mo H

Note that it it not possible to give two different k-points the same caption.

BAND STRUCTURE SCHEME:

The band structure scheme represents all the k-directions along which you wish
to plot the band structure. It consists on a serie of k-points, identified by
their respective caption, separated either by "-" (minus sign) or by " " (empty
space).

For each group of two captions separated by a minus sign, the program will plot
a band structure using all the appropriate k-points available in the database
between the two corresponding k-points.

If you leave an empty space between two captions, the program will leave an
empty space in the graph allowing you to plot many disconnected k-directions
on the same graph. For example :

{sG}-{1X}-{1K} {sG}-{1P}

will give you a plot containing the band structure along the I'-X direction,
immediately followed by the X-K direction, than an empty space will be laid on
the graph before plotting the band structure along the I'-P direction.

Note that all captions used to specify the band structure scheme must be de-
fined in the special k-points section.

DATABASE:

(This section must not be modified by the user.)

The database contains a list of k-points reduced coordinates and associated en-
ergy eigenvalues (in eV).



DATABASE KEY:

(This section must not be modified by the user.)

The database key contains multiple informations regarding the system geometry
and convergence criteria used to calculate energy eigenvalues of each k-point.
In order for the band structure graph to be valid, it is important that all k-
points plotted had their energy eigenvalues obtained from the same system and
calculated using the same convergence criteria. Before adding any datas to the
database, such a key is calculated for each dataset and compared to the database
key.

STEP 3 : produce a .agr file

Now that you have a customized .dbs file, you must extract datas from this
file to produce a .agr file (a formatted file readable by xmgrace).

To produce a .agr file, execute the program and specify the name of the .dbs
file you wish to use :

> python AbinitBandStructureMaker.py file.out.dbs
If everything goes well, you’ll get the following message :

> "file.out.agr" file created successfully

STEP 4 : plot the band structure

Now that you possess a .agr file, you just need to execute xmgrace and use
the .agr file to plot the band structure.

> xmgrace file.out.agr

xmgrace automatic launch setup :

Add the keyword -setautolaunch in the command line to choose whether or
not you want to automatically launch xmgrace each time a .agr file is created
(default is no). You will also be asked to enter the zmgrace launch command,
which is the command you usually write in your shell to launch zmgrace (default
is xmgrace).



Energy shift setup :

Add the keyword -setenergyshift in the command line to choose wheter or
not you want to shift energy eigenvalues to bring the Fermi energy to zero (de-
fault is yes).

Line color setup :

Add the keyword -setlinecolor in the command line to choose the color of
energy bands (default is blue for the valence bands ; red for the conduction
bands).

The 16 colors recognized by xmgrace are :
white, black, red, green, blue, yellow, brown, grey, violet, cyan,
magenta, orange, indigo, maroon, turquoise, green4

Line width setup :

Add the keyword -setlinewidth in the command line to choose the thick-
ness of energy band lines, Fermi energy line and separator lines (default is 1 for
energy band lines ; 1 for Fermi energy line ; 1 for separator lines).

Empty space(s) width setup :

Add the keyword -setspacewidth in the command line to choose the percent-
age of the total graph width to be occupied by empty space(s), if any. Empty
spaces are empty regions of the graph laid between disconnected k-directions in
the band structure. Remember that you can place such empty spaces by putting

a" " (empty space) instead of a "-" (minus sign) between two captions in the
band structure scheme section of the .dbs file.

Global setup :

Add the keyword -setup in the command line if you want to perform a global
setup and set all the available options mentionned above in the same run.

Restore default setup :

Add the keyword -setdefault in the command line to restore the default setup.



Debug mode :

Add the keyword -debug in the command line to activate the debug mode.
While the debug mode is activated, many informations otherwise unseen will be
printed on the screen during the execution. This feature is useful if you want
to keep a trace of what the code does. It is also a good way to locate exactly
where bugs happen, if any.



